摘要:單級功率因數校正(簡稱單級PFC)由于控制電路簡單、成本低、功率密度高在中小功率場合得到了廣泛的應用。但是,單級PFC中存在一些問題,如儲能電容電壓隨輸入電壓和負載的變化而變化,在輸入高壓或輕載時,電容電壓可能達到上千伏;變換器的效率低;開關損耗大等缺點。介紹了幾種改進的拓撲結構以解決這些問題。 關鍵詞:功率因數校正;AC/DC變換器;單級
1??? 概述 ??? 為了減小對交流電網的諧波污染,國內外都制訂了限制電流諧波的有關標準(如IEC1000-3-2)。因此,要求交流輸入電源必須采取措施降低電流諧波含量,提高功率因數。目前廣泛采用的有源功率因數校正方法有兩種,即兩級PFC和單級PFC。兩級PFC方案[1]如圖1所示,將PFC級輸出端與DC/DC變換器相串聯,兩級控制電路相互獨立。
圖1??? 兩級PFC方案圖 ??? PFC級使輸入電流跟隨輸入電壓,使輸入電流正弦化,提高功率因數,減少諧波含量。后接的DC/DC級實現輸出電壓的快速調節。由于采用兩級結構,電路復雜,裝置費用高,效率低。在小功率應用場合,兩級PFC很不適用。因此,研究單級PFC及變換技術成為電力電子領域中的一項重要課題。 ??? 單級PFC[2][3]將PFC級和DC/DC級組合在一起共用一個開關管和一套控制電路,同時實現對輸入電流的整形和對輸出電壓的調節。它與兩級方案不同的是,控制電路只調節輸出電壓,保證輸出電壓的穩定,在穩態時,占空比恒定,因此,要求PFC級的電流能自動跟隨輸入電壓,雖然,單級PFC變換器的輸入電流不是正弦波,PF值不如兩級方案高,但由于IEC1000?3?2只對電流諧波含量有要求,對PF值沒有嚴格的要求,單級PFC變換器的輸入電流諧波足以滿足IEC1000?3?2。而且由于采用單級結構,電路簡單,成本低,功率密度高。 ??? 因此,單級PFC變換器在小功率場合得到了廣泛的應用。本文主要對單級PFC的拓撲進行了分析,指出了存在的問題,介紹了幾種改進的拓撲結構以解決這些問題。 2??? 單級隔離式Boost PFC電路的分析及存在的問題 ??? 典型的單級隔離式Boost PFC電路如圖2所示,該拓撲是由升壓型PFC級和正激式DC/DC變換器組合而成。有源開關S為共享開關,CB為緩沖電容。通過控制S的通斷,電路同時實現對輸入電流的整形和對輸出電壓的調節。 圖2??? 典型的單級隔離式boost PFC電路 ??? 眾所周知,電流斷續模式(DCM)的Boost變換器,在固定占空比下電流自動跟隨輸入電壓,因此,PFC級工作在DCM下可以得到較高的功率因數。但是,輸入和輸出電感電流的峰值較高,增加了有源開關的電流應力和開關損耗;變換器的效率低;另外電路需要一個更大的EMI濾波器。如果要求減小開關器件的電壓、電流應力,那就需要PFC級工作在電流連續模式(CCM)下,同時可以提高整個變換器的效率并減小EMI。如在圖2的a和b之間加一電感L1,可以使PFC級工作在CCM下。對于DC/DC變換器而言,為了提高變換器的效率,一般工作在CCM下,因此,占空比不隨負載變化。當負載變輕時,輸出功率減小,而PFC級輸入功率同重載時一樣,則充入儲能電容的容量大于從儲能電容抽走的能量,導致儲能電容電壓上升。為了保持輸出電壓一致,電壓反饋環調節輸出電壓,使占空比減小,輸入能量也相應減小,這個動態過程要到輸入和輸出功率平衡后才停止。負載減小帶來的后果是直流總線電壓明顯上升,也就是電容電壓明顯上升,甚至達到上千伏。 ??? 降低電容電壓通常有兩種方法:一種方法就是采用變頻控制[4],可以使電容電壓低于450V,但是頻率變化范圍可能高達十倍,不利于磁性元件的優化設計;另一種就是采用變壓器繞組實現負反饋。如果PFC級和DC/DC變換器都工作在CCM下,輸出功率減小時,雖然占空比不變,但輸入功率也會相應減小,抑制了儲能電容電壓的增加,它的效率是最高的,PF值有所降低,但是,很難找到一種拓撲完全工作在CCM下,設計上也相對復雜。串聯單級PFC變換器的功率流圖如圖3所示,從圖中可以看出,功率由輸入傳送到輸出,經過了兩次變換,效率低。
圖3??? 串聯單級PFC變換器的功率流圖 ??? 因此,單級PFC變換器的主要問題是,在使輸入電流諧波滿足IEC1000-3-2和快速調節輸出電壓的同時,降低電容電壓和提高效率;另外單級PFC變換器工作在硬開關狀態時,開關器件承受的電壓、電流應力高,因此,開關損耗很大。所以,人們提出了用變壓器繞組實現負反饋,用軟開關技術以及并聯PFC等方法來降低電容電壓,開關損耗和提高效率。下面介紹幾種改進的拓撲以解決這些問題。 3??? 幾種改進的拓撲介紹 3.1??? 單級并聯PFC變換器[1][6][7] ??? 如前所述,無論是單級還是兩級結構,串聯式拓撲結構的效率都較低。為了提高變換器的效率,人們提出了并聯PFC方法。其基本思路如下:假設PF=1,PFC輸入功率與輸出功率關系如圖4所示,平均輸入功率Pin的68%(P1)經過一次功率變換到達負載,32%的剩余功率(P2)為輸入與輸出功率在半個電網周期內的差,經過兩次功率變換到達負載[1]。圖5為該方法的功率流圖,P2經過兩次功率變換到達輸出,其余部分P1經過一次功率變換達到輸出,從而提高了電路效率,并且高于兩級和串聯單級變換器。
圖4??? PFC輸入功率與輸出功率關系圖
圖5??? 單級并聯PFC方法的功率流圖 ??? 典型的單級Boost PPFC變換器[1]如圖6所示,電路在原帶隔離變壓器Boost拓撲結構中加入了D1,S5及Cb。電路工作時,當檢測到輸入功率(Pin)小于輸出功率(P0)時,S5開通,Cb中的能量釋放到輸出,這部分能量為P2。當輸入功率(Pin)大于輸出功率(P0)時,S5關斷,通過控制S1~S4使多出的能量存入Cb。因此,電路的控制要實現三個功能,即輸入電流控制,輸出電壓控制和電容電壓控制。這種PPFC變換器的主要優點是效率高。由于這三個被控量之間存在耦合關系,所以,控制電路復雜,控制器設計困難;另外,開關管數目多,成本較高,這些都是該變換器的主要缺點。因此,它適用于較大功率場合而不適用于小功率場合。于是文獻[6]提出了一種單級反激PPFC變換器,如圖7所示。
圖6??? 單級Boost PPFC變換器
圖7??? 單級反激PPFC變換器 ??? T1,S,D3,Cf,RL構成電路的主支路,T2及D2組成電路的輔助支路。儲能電容CB通過D1充電到輸入電壓的峰值電壓作為輔助支路的輸入電壓。由于兩個并聯反激支路同時工作,使用二極管D2和D3來防止這兩個支路之間產生循環電流。該變換器由輸入電壓Vin和儲能電容CB同時給負載提供能量。盡管輸入電壓Vin給負載提供大部分能量。但是,當輸入電壓很小時,負載的能量主要由儲能電容CB提供。兩個變壓器可以在DCM或CCM下工作。對于小功率應用,為了提高效率,兩個變壓器都工作在DCM下。主支路與輔助支路之間的功率分配決定輸入電流的諧波含量,而變壓器T1及T2的電感值決定功率分配。所以,通過正確的設計變壓器T1及T2的電感值可以使輸入電流的諧波含量滿足IEC1000-3-2的要求。該變換器僅用一個有源開關和一個控制環就可快速地調節輸出電壓。 ??? 它的主要優點是結構簡單、效率高、儲能電容電壓被箝位,電壓值的大小等于輸入電壓的峰值,對功率開關管沒有產生附加的電壓應力。另外,在S開通時,由T1直接傳遞大部分能量到負載,降低了開關管的電流應力,提高了變換器的效率。它的主要缺點是元件數目多,成本較高。 3.2??? 用變壓器繞組實現負反饋的單級PFC變換器 ??? 用變壓器繞組實現負反饋的單級PFC變換器[8]如圖8所示。N1為變壓器耦合的繞組。 ??? 用變壓器繞組N1實現負反饋來抑制電容電壓Vc。當S開通時,Vc加在變壓器的初級繞組Np,因此,繞組N1上的電壓同Vc成正比。只有當輸入整流后的電壓大于N1上的電壓時,電感LB上才有電流;S關斷時,LB上的能量經過D1釋放到CB。負載變化引起Vc變化,加在LB上的電壓立刻變化,從而改變了輸入電流和輸入功率,有效地抑制了Vc的增長。但N1的加入降低了功率因數,增加了電流諧波含量。 ??? 在圖8的A和B之間再增加一個繞組N2[3][7],如圖9所示。加繞組N2之后,在S關斷時,加在電感LB上的反向電壓為Vc和N2上的電壓之和減去輸入電壓,減小了輸入功率,從而進一步降低了Vc,同時,也提高了功率因數。N2的選取應該滿足N1+N2<Np。可見,增大N1可以降低電容電壓,提高效率,但同時降低了功率因數,增加了電流諧波含量。 圖8??? 用變壓器繞組實現負反饋的單級PFC變換器 ??? 如果要求更低限度地減小開關器件的電壓、電流應力,那么在圖8和圖9中的二極管D2和繞組N1之間加入電感Lr,使輸入電流工作在CCM下。Lr可以利用變壓器漏感,也可以另外加一個電感[3]。
圖9??? 用雙繞組實現負反饋的單級PFC變換器 3.3??? 帶低頻輔助開關的單級PFC變換器[9] ??? 用變壓器附加繞組實現負反饋降低了電容電壓,提高了效率。但同時降低了功率因數,增加了電流諧波含量。文獻[9]針對這一不足提出了一種帶低頻輔助開關的單級PFC變換器,不僅有效地抑制了電容電壓,提高了效率,同時還提高了功率因數,減少了電流諧波含量。 ??? 帶低頻輔助開關的CCM單級PFC變換器如圖10所示,S為主開關,Sr為輔助開關。 圖10??? 帶低頻輔助開關的CCM單級PFC變換器 ??? 輔助開關Sr的驅動波形如圖11所示,當輸入電壓在零附近時,輔助開關Sr導通,使附加繞組N1短路,從而改善了輸入電流的波形,減少了輸入電流的諧波含量,提高了功率因數。 ??? 當輸入電壓大于某一值時,輔助開關管Sr關斷;其余的工作情況與圖8和圖9相似。輔助開關Sr在輸入電壓很小時才導通工作,其余時間不工作。因此,流過Sr的電流很小,Sr的功率損耗很小。由圖11知,輔助開關的工作頻率為交流電源頻率的兩倍。故在整個工作期間,Sr的開關損耗很小。另外,輔助開關Sr的控制電路也很簡單。由上述分析知,帶低頻輔助開關的單級PFC變換器減小了輸入電流的諧波含量;提高了功率因數和效率;降低了電容電壓。
圖11??? 輔助開關Sr的驅動波形 ??? 輔助開關Sr也可以放在其他位置,得到不同的拓撲結構,如圖12所示。圖12(a)所示的電路使L1旁路,也就是說,輸入電壓在零附近時,導通開關Sr,使L1短路,電路工作在DCM下,從而增加了輸入電流,這種方法不能消除輸入電流的死角。因此,與圖10的電路相比,圖12(a)的電路的輸入電流的畸變更大。Sr另外一種實現方式如圖12(b)所示,使L1和N1都旁路,也就是說,輸入電壓在零附近時,導通開關Sr,使L1和N1都短路。這種方法可以完全消除輸入電流的死角,提高功率因數。但是,與圖10的電路相比,圖12(b)電路中的儲能電容電壓更高。因為,圖12(b)電路有一小部分時間工作在DCM下。另外,該方法也可以應用在其他的DCM/CCM單級PFC變換器中,如圖13所示的帶低頻輔助開關的DCM單級PFC變換器。
(a)??? 使L1旁路
(b)??? 使L1和N1都旁路 圖12??? Sr不同位置的實現方式
圖13??? 帶低頻輔助開關的DCM單級PFC變換器 3.4??? 帶有源箝位和軟開關的單級PFC變換器 ??? 單級隔離式PFC變換器與普通的DC/DC變換器相比有電壓、電流應力高,損耗大的缺點。因此,采用有源箝位和軟開關等先進技術來減小單級隔離式PFC變換器的開關損耗和電壓應力。 ??? 帶有源箝位和軟開關的單級隔離式PFC變換器[10]如圖14所示。S為主開關,Sa為輔助開關。Cc為箝位電容,CB為儲能電容,Cr為開關S和Sa的寄生電容以及電路中其他的寄生電容之和。Boost單元工作在DCM下,保證有高的功率因數;為避免DCM有較高的電流應力,Flyback設計為CCM。采用有源箝位和軟開關技術限制了開關的電壓應力,再生了儲存在變壓器漏感中的能量,為主開關和輔助開關提供了軟開關條件,減少了開關損耗,提高了變換器的效率。主開關與輔助開關用同一個控制/驅動電路,進一步提高了電路的實用性。 圖14??? 帶有源箝位和軟開關的單級隔離式PFC變換器 4??? 結語 ??? 單級PFC變換器由于具有電路簡單,成本低,功率密度高的優點,而在中小功率場合得到了廣泛的應用。通過分析單級PFC的拓撲結構,指出了它存在的一些問題,如儲能電容電壓隨輸入電壓和負載的變化而變化,在輸入高壓或輕載時,電容電壓可能達到上千伏;變換器的效率低;開關損耗大;有源開關的電壓、電流應力高。而對用變壓器繞組實現負反饋,用軟開關技術,用低頻輔助開關以及并聯PFC等方法來降低電容電壓,開關損耗,減少電流諧波含量和提高效率等問題進行了綜述,并分析了幾種改進拓撲的工作原理,比較了它們的優缺點。 |
改進的單級功率因數校正AC/DC變換器的拓撲綜述
- 變換器(108177)
相關推薦
基于SEPIC變換器的高功率因數LED照明電源設計
針對LED驅動電源功率因數低的問題,依據LED照明電源的特點,選擇SEPIC電路作為主電路拓撲實現功率因數校正(PFC)和LED電流控制。傳統的SEPIC電路用于功率因數校正時都工作在斷續模式
2018-02-28 09:07:275952
AC/DC前端轉換器模塊中功率因數校正技術介紹
為了符合EN61000-3-2等法規的諧波要求并保持較高的整體PF性能,有必要在電子系統中使用的AC/DC前端轉換器模塊中加入功率因數校正(PFC)功耗超過75 W.實現PFC可實現高PF值并確保低諧波。正如我們將要看到的,目前有許多無源和有源技術可用于AC前端采用的眾多電源拓撲結構。
2019-01-25 08:24:005659
DC-DC變換器的應用電路
隨著微電子技術、磁性材料科學以及其他邊沿技術科學的不斷改進和飛速發展,使得開關穩壓電源( DC - DC、DC - AC、AC - DC、AC-AC等各種非線性高頻變換器技術)、功率因數校正( PFC)、電機驅動和電源管理技術有了突破性的進展,而DC-DC變換器技術則是這些技術中的核心。
2023-03-02 16:26:445527
功率因數的校正
。免受公用事業公司“復仇”之苦的一個辦法是使用TI 全新功率因數校正控制器 UCC28180。該產品在連續導通模式下工作,支持從幾百瓦到數千瓦的寬泛功率級,進而可用于廣泛的家庭及辦公電器設備,例如電視
2018-09-19 11:30:24
單級BUCK-BOOST變換器實現APFC的原理及分析
單級BUCK-BOOST變換器實現APFC的原理及分析本文分析了用BUCK-BOOST電路和反激變換器隔離實現單級功率因數校正的原理和變換過程,給出了電路的Matlab仿真分析的模型。通過對變換器工作在DCM模式下的電路仿真,驗證了此方法有良好的效果。[hide][/hide]
2009-12-10 17:09:18
單級三相高頻隔離AC/DC變換器設計
實現高功率因數運行;DC/DC環節基于正反激電路設計,可穩定輸出電壓。 該單級高頻隔離三相AC/DC變換器的工作原理為:在輸入整流端采用PWM整流的方法,從而在變壓器原邊Np兩端產生PWM方波;原邊
2018-10-09 14:10:28
AP1684是一款高性能AC / DC功率因數校正LED驅動器控制器,可驅動高壓雙極晶體管
AP1684 Ac / Dc,高Pf,高效率LED驅動器控制器的典型應用。 AP1684是一款高性能AC / DC功率因數校正LED驅動器控制器,可驅動高壓雙極晶體管。該器件采用脈沖頻率調制(PFM
2019-10-18 08:46:36
C2000 MCU三相功率因數校正參考設計包括BOM及層圖
描述 高功率三相功率因數 (AC-DC) 應用中(例如非板載 EV 充電器和電信整流器)使用了 Vienna 整流器電源拓撲。整流器的控制設計可能很復雜。此設計說明了使用 C2000? 微控制器
2018-10-24 16:36:45
MT7933單級/高功率因數/原邊控制交流轉直流
資料方案+++++郭生qq:3301086671下面產品介紹:MT7933 是一個單級、高功率因數,原邊控制交流轉直流LED驅動芯片。MT7933 集成片上功率因數校正(PFC)功能,在臨界導通模式
2019-08-20 11:46:33
MT7936美芯晟驅動單級高功率因數 AC-DC LED 驅動
描述//QQ2892715427 MT7936 是一個單級、高功率因數,原邊控制交流轉直流LED驅動芯片。MT7936 集成片上功率因數校正(PFC)功能,在臨界導通模式下運行,實現了高功率因數并
2016-09-19 22:38:05
NCL30000功率因數校正可調光LED驅動器的典型應用
NCL30000功率因數校正可調光LED驅動器的典型應用。 NCL30000是一款開關模式電源控制器,適用于中低功率單級功率因數(PF)校正LED驅動器
2019-05-16 09:08:41
NCL30000功率因數校正可調光LED驅動器的典型應用
NCL30000功率因數校正可調光LED驅動器的典型應用。 NCL30000是一款開關模式電源控制器,適用于中低功率單級功率因數(PF)校正LED驅動器
2019-05-16 09:09:09
NCL30002DIM1GEVB,適用于中低功率單級功率因數(PF)校正LED驅動器
NCL30002DIM1GEVB,評估板采用NCL30002開關模式電源控制器,適用于中低功率單級功率因數(PF)校正LED驅動器。該器件作為臨界導通模式(CrM)降壓控制器工作,以在特定線電壓
2019-09-05 07:32:14
NCL30002LED1GEVB,是一款開關模式電源控制器,適用于中低功率單級功率因數(PF)校正LED驅動器
NCL30002LED1GEVB,評估板使用NCL30002,100至132 Vac,750 mA高功率因數,18 W降壓驅動器。 NCL30002是一款開關模式電源控制器,適用于中低功率單級
2019-09-11 07:14:40
pspice升壓功率因數校正
各位老師我用pspice10.5仿真基于uc3854的升壓功率因數校正,但是輸入電流與輸入電壓相位相差90,這是為何呢?謝謝了。如果給我解決我可以把積分都給你的。
2012-05-03 08:14:05
什么是功率因數校正 PFC?
供應器上的功率因數校正器的運作原理是去控制調整交流電電流輸入的時間與波型, 使其與直流電電壓波型盡可能一致,讓功率因數趨近于。 這對于電力需求量大到某一個水準的電子設備而言是很重要的, 否則電力設備
2022-10-08 11:30:07
關于電源的功率因數校正
這些天準備和小伙伴攻一下功率因數校正,但是不知道哪些芯片能夠比較好的進行功率因數測量,或者是用哪種方法可以測得功率因數。我們也查閱了一些資料,但是沒找到滿意的方法,哪位大神指點一下!!
2015-06-17 13:28:34
單相AC-DC變換電路
±0.1V。(2)利用LM339將交流信號轉換成方波,并用單片機中斷檢測上升沿或下降沿,根據前后沿的時間計算出相位,根據相位即可計算出功率因數,實現AC-DC 變換電路輸入側功率因數的測量,測量誤差
2013-10-30 23:17:31
基于SEPIC變換器的高功率因數LED照明電源設計
效率高達92.3%。 4、結語 本文介紹了一種用于LED照明的高功率因數電源的設計,電源主電路拓撲采用SEPIC變換器,利用單級變換器實現功率因數校正,使用的器件少,損耗低,電源體積小;反饋控制簡單
2018-10-22 15:24:12
如何以單級方式驅動帶功率因數校正的LED
PFC-SEPIC LED 驅動器 — 哇,縮寫詞真多!PFC 代表“功率因數校正”SEPIC 代表“單端初級電感轉換器”當然,LED 代表“發光二極管”在一個轉換器中整合這三種特性,可為 LED
2022-11-22 07:37:41
如何區別主動式功率因數校正?
知道了主動式功率因數校正(Active Power Factor Correction)的好處后,使用者最想知道的是如何區分真的具有主動式功率因數校正功能的電源供應器。在此提供幾項簡單評量的方式
2022-10-08 11:59:08
如何通過選擇拓撲提高工業AC/DC電源的可靠性
的94.5%效率、500 W工業AC / DC參考設計中,前端功率因數校正(PFC)級是交錯式過渡模式升壓拓撲,盡管單級連續導通模式(CCM)升壓拓撲結構是也是一個可行選擇。拓撲選擇主要是出于器件壓力
2022-11-10 06:26:18
山勝電子電源模塊PFC變換器
要求不特別高時,將PFC變換器和后級DC/DC變換器組合成一個拓撲,構成單級高功率因數AC/DC開關電源,只用一個主開關管,可使功率因數校正到0.8以上,并使輸出直流電壓可調,調整后的直流電壓就促進
2013-08-20 16:00:47
數字控制的無橋300W功率因數校正轉換器參考設計
描述此設計是一種數字控制的無橋 300W 功率因數校正轉換器。無橋 PFC 轉換器的明顯特征是輸入端不再需要二極管電橋。這降低了二極管電橋通常發生的功率損失,從而改進了總體系統效率。對于
2022-09-23 07:24:11
無橋功率因數校正轉換器
`描述此設計是一種數字控制的無橋 300W 功率因數校正轉換器。無橋 PFC 轉換器的明顯特征是輸入端不再需要二極管電橋。這降低了二極管電橋通常發生的功率損失,從而改進了總體系統效率。對于
2015-04-08 15:10:13
有源功率因數校正與單級功率因數校正的關系
請問有源功率因數校正與單級功率因數校正有關系嗎?在我看來單級功率因數校正是否包括有源功率因數校正技術呢,對不對呢?有人能詳細解答一下嘛?
2020-04-19 21:26:10
有源功率因數校正技術介紹
開關功率因數校正電路的原理,包括單相、三相有源箱位零電壓開關功率因數校正電路。
本書可作為電氣工程與自動化專業、電子信息工程專業的高年級本科生、電氣工程學科的研究生參考書,也可作為從事開關電源、變頻器、UPS、工業電源等電力電子裝置開發、設計工程技術人員的參考書。
2023-09-19 07:12:10
有源功率因數校正電路和無源功率因數校正電路介紹
諧波,對電網造成污染。因此高效、高功率因數、低諧波的拓撲受到廣泛關注。 為實現低諧波、高功率因數AC/DC變換,功率因數校正(Power Factor Correction, PFC)電路應運而生
2023-04-03 14:37:48
有源功率因數校正電路工作原理分析
一段因輸人電壓低而不能正常工作,輸出電壓較低,在相同功率等級時,后級DC/DC變換器電流應力較大;開關管門極驅動信號地與輸出地不同,驅動較復雜,加之輸人電流斷續,功率因數不可能提高很多,因此很少被采用
2012-11-28 14:38:48
有源功率因數校正電路工作原理分析
保護。該電路的主要缺點是:由于只有在輸人電壓高于輸出電壓時,該電路才能工作,所以在每個正弦周期中,該電路有一段因輸人電壓低而不能正常工作,輸出電壓較低,在相同功率等級時,后級DC/DC變換器電流應力
2011-09-22 09:45:00
用單級方式驅動帶功率因數校正的LED
作者:Brian KingPFC-SEPIC LED 驅動器 — 哇,縮寫詞真多!PFC 代表“功率因數校正”SEPIC 代表“單端初級電感轉換器”當然,LED 代表“發光二極管”在一個轉換器中整合
2018-09-13 15:09:15
用于AC/DC系統的功率因數校正PFC控制器IC
全球最知名的半導體廠商羅姆(ROHM)株式會社推出了兩款用于AC/DC系統的功率因數校正(PFC)控制器IC——BD7690FJ和BD7691FJ,適用于所有需要提高功率因數的產品。這兩款芯片采用
2019-04-28 09:55:07
中小容量低諧波高功率因數AC/DC(開關型)電源變換器的設計
有源功率因數校正(APFc)原理提高電子電源的功率因數,抑制其電流諧波畸變,目前有無源校正和有源校正兩種方案。無源校正是在電路中串聯(或并聯)無源LC諧振回路,
2008-10-22 23:04:0539
L4981在門機電源功率因數校正中的應用
針對普通開關電源功率因數較低和諧波較大的缺陷,以M981功率因數校正芯片為核心,構建了雙級式PFC電源的功率因數校正前級。在選取確定了主電路拓撲結構后,介紹了它的工作原
2008-12-19 01:50:4155
175W單位功率因數變換器設計
以功率因數控制蒼片MC33368為核心.設計了一種寬電壓輸入范圍、固定升壓輸出的175W 的AC/DC變換器。實驗結果表明.基于MC3336
2008-12-21 14:04:2524
有源功率因數校正變換器的實現
本文介紹了開關電源功率因數校正的實質,分析了功率因數校正的電路實現方法,并提出了變換器的相關要求。近年來,隨著電子技術的發展,各種辦公自動化設備,家用電器,
2009-08-07 08:56:1656
電荷泵高功率因數變換器
本文提出一種新型電荷泵高功率因數準半橋變換器拓撲結構。該變換器具有電路結構簡單和采用普通的PWM 控制方式的特點。文中分析了電路的工作過程及取得高功率因數的條件,
2009-08-15 15:35:1019
Boost型功率因數校正變換器的數字控制研究
Boost 型功率因數校正變換器的數字控制研究:數字控制逐漸和電力電子應用緊密結合,功率因數校正是電力電子技術的一個重要應用。文中針對Boost 型功率因數校正電路建立了平均
2009-10-14 09:39:2328
單相有源功率因數校正技術的發展
本文對現有的功率因數校正技術進行了分析和總結。通過軟開關技術以及新型高性能的電路拓撲設計,分析了提高AC-DC變換器的轉換效率的技術。提出了無橋PFC電路是高性能功率因
2009-10-14 10:40:5441
功率較大的可多路獨立供電的半橋DC/DC變換器
介紹了一種功率較大的可多路獨立供電的半橋DC/DC變換器。采用了有源功率因數校正技術以實現系統的高功率因數。DC/DC主電路采用高速雙路PWM芯片UC3825控制的半橋變換器,并且
2009-10-14 12:28:1724
38V/100A可直接并聯大功率AC/DC變換器
設計了大功率AC/DC變換器,主要環節有DC/DC電路、功率因數校正電路、PWM控制電路、均流電路和保護電路等。
2009-11-01 00:10:4699
BOOST高功率因數變換器
BOOST 高功率因數變換器5 電力電子仿真領域的方案探求:由于電力電子研究中相關功率變換器的非線性以及可能有的多種運行模(連續模式CCM和不連續模式D
2010-03-20 16:14:1936
單級PFC變換器的功率因數校正效果的研究
單級PFC變換器的功率因數校正效果的研究
為了使開關電源的輸入電流諧波滿足要求,必須加入功率因數校正(PFC)。目前應用得最廣泛的是PFC級+DC/DC級的兩級方案,它們
2010-04-12 18:04:2734
臨界不連續電流模式功率因數校正電路設計
摘要:研究了電壓型和電流型臨界不連續電流模式的功率因數校正電路。采用MC33260設計的500w AC/DC變換器可以適應90~265V電壓變化范圍,功率因數在0.98以上。關鍵詞:功率因數
2010-04-30 09:17:0827
電荷泵式功率因數校正電子鎮流器
電荷泵功率因數校正(CPPFC)電子鎮流器由于其良好的功率因數校正性能越來越受到人們的關注。以幾種帶電荷泵功率因數校正器的電子鎮流器為例子,介紹了電荷泵功率因數校正
2010-05-08 08:44:3954
先進的功率因數校正
議程AgendaR26; 引言Introductionh8707; 功率因數校正的基本解決方案Basic solutions for power factor correctionh8707; 要滿足的新需求New needs to addressR26; 交錯式的功率因數校正In
2010-07-30 10:18:3738
臨界導電模式(BCM)功率因數校正Boost開關變換器的設計
分析整流電路的拓撲結構和工作模式,探討該整流電路關鍵參數的選取依據,提出臨界導電模式(BCM)功率因數校正Boost開關變換器的設計方法。仿真結果表明,所設計的以MC33262為
2010-12-30 10:24:0454
改進的單級功率因數校正AC/DC變換器的拓撲綜述
校正;AC/DC變換器;單級1 概述為了減小對交流電網的諧波污染,國內外都制訂了限制電流諧波的有關標準(如IEC1000-3-?2)。因此,要求交流輸入電源必須采取措施降低電流諧波含量,提高功率因數
2006-03-11 13:10:49238
反激式功率因數校正電路的電磁兼容設計
反激式功率因數校正電路的電磁兼容設計
通過反激式功率因數校正電路說明了單級功率因數校正電路中的電磁兼容問題,分析了單級功率因數校正電路中騷擾的產生機
2009-06-30 20:23:29934
應用DCVM模式工作的Cuk變換器于功率因數校正
應用DCVM模式工作的Cuk變換器于功率因數校正
1引言
隨著電力電子裝置的大量應用,使大量諧波電流注入了電網中,從而
2009-07-09 11:09:211253
單極隔離式功率因數校正(PFC)變換器
單極隔離式功率因數校正(PFC)變換器
1引言
現代開關電源的主要發展趨向之一是提高AC/DC變換器輸入端功率因數,減少對電網的諧波污染。傳統的AC/DC開關變換
2009-07-10 10:07:392759
單級功率因數校正在AC-PDP開關電源小型化設計中的應用
單級功率因數校正在AC-PDP開關電源小型化設計中的應用
摘要:傳統的交流等離子顯示器(AC?PDP)開關電源采用的是功率因數校正加DC/
2009-07-11 13:52:34821
38V/100A可直接并聯大功率AC/DC變換器
38V/100A可直接并聯大功率AC/DC變換器
摘要:介紹了一種38V/100A可直接并聯的大功率AC/DC變換器。采用了有源功率因數校正技術
2009-07-14 08:14:002335
移相全橋ZVZCS DC/DC變換器綜述
移相全橋ZVZCS DC/DC變換器綜述
摘要:概述了9種移相全橋ZVZCSDC/DC變換器,簡要介紹了各種電路拓撲的工作原理,并對比了優缺
2009-07-14 08:51:322407
零轉換PWMDC/DC變換器的拓撲綜述
零轉換PWMDC/DC變換器的拓撲綜述
摘要:零轉換PWMDC/DC變換器是器件應力較小、效率較高的1種DC/DC變換器結構,應用較為廣泛
2009-07-14 09:15:041057
基于Flyboost模塊的新型單級功率因數校正變換器
基于Flyboost模塊的新型單級功率因數校正變換器
摘要:提出了一種新型的功率因數校正模塊(flyboost模塊),它具有
2009-07-14 09:16:361030
一種新型單級功率因數校正(PFC)變換器
一種新型單級功率因數校正(PFC)變換器
摘要:提出了一種新型的功率因數校正單元(flyback+boost單元)。這種功率因數單
2009-07-14 17:49:32932
可多路獨立供電的半橋DC/DC變換器的設計
可多路獨立供電的半橋DC/DC變換器的設計
介紹了一種功率較大的可多路獨立供電的半橋DC/DC變換器。采用了有源功率因數校正技
2009-10-09 09:45:061820
三電平單級PFC的電路拓撲及控制方式
本文研究了適用于大功率單相單級變換器的電路拓撲及其控制方式,提出了單級功率因數校正AC/DC變換器的設計方案。該PFC變換器基于一種三電平LCC諧振變換器拓撲,整個變換
2010-11-22 09:53:224738
不間斷供電的功率因數校正的開關電源
t ible Pow er2facto r2co rrected Pow er Supp lies) 電路的高功率因數和最撲結構的單級AC2 DC 變換電路, 對四拓撲變換器加以適當控
2011-01-13 18:01:0120
新型單級隔離型軟開關功率因數變換器
提出一種兼具軟開關和箝位的新型單級隔離型 功率因數校正 變換器拓撲。該變換器能滿足電氣隔離的應用要求,提升單級隔離型PFC的功率等級。與傳統單級結構相比,新拓撲輸入電流
2011-07-26 17:58:4333
新型三相功率因數校正器的研究
以單相Cuk型變換器合成三相功率因數校正電路為研究對象,將三相交流電分成單相A-B、B-C、C-A進行功率因數校正,運用升壓型平均電流控制的功率因數校正思想,解決了常規單相Cuk型有
2011-09-23 14:51:3651
新型AC LED變換器拓撲電路設計
針對傳統的LED 燈整流電路的濾波電容使整流前端的交流輸入電流波形變成尖脈沖,造成功率因數低、諧波成分增加等問題,提出了一種新型的AC LED 變換器拓撲電路。
2012-08-22 11:31:2512361
二次型Boost功率因數校正變換器
與傳統電流斷續模式( DCM) Boost功率因數校正(PFC)變換器相比,定占空比控制二次型DCM-DCM Boost PFC變換器的輸出電壓紋波明顯減小,然而,其功率因數(PF)低于傳統DCM
2018-03-28 10:56:041
基于AC LED燈的變換器拓撲電路設計
傳統的LED 燈恒流控制是通過AC/DC,再通過DC/DC變換器進行恒流控制,在AC/DC 變換器中,通常在整流電路后面用濾波電容使輸出的電壓平滑,但是大電容的存在造成交流端的輸入電流波形變成尖脈沖,而不再是正弦函數(降低功率因數)。
2020-01-30 16:46:00913
基于雙輸出單級反激PFC變換器驅動高亮LED的設計
AC /DC 變換器中常見的有源功率校正( Active PowerFactor Correction,APFC) 電路是兩級PFC 電路,前一級電路用來進行功率因數校正,后一級電路用作DC /DC 變換器
2019-12-13 15:56:41963
基于一種雙輸出單級反激PFC變換器的LED驅動器控制設計
AC /DC變換器中常見的有源功率校正( Active PowerFactor Correction,APFC) 電路是兩級PFC電路,前一級電路用來進行功率因數校正,后一級電路用作DC /DC變換器。
2019-12-17 15:29:551068
BOOST-BUCK變換器
功率因數校正問題是許多電器設備都需要解決的問題。對此,人們提出了許多的電路拓撲和控制方案來解決它。其中運用較為廣泛的是利用BOOST型變換器來做功率因數校正。這是因為BOOST變換器具有許多其他電路拓撲所不具有的優點,例如輸入電流連續,控制簡單等。
2021-06-17 16:14:3616
美浦森推薦PFC 功率因數校正方案
PFC的英文全稱為“PowerFactorCorrection”,意思是“功率因數校正”,功率因數指的是有效功率與總耗電量(視在功率)之間的關系,也就是有效功率除以總耗電量(視在功率)的比值。基本上
2022-04-29 16:40:55648
什么是功率因數 功率因數校正基礎知識
簡介 功率因數校正 (PFC) 是客戶在選擇電源時尋求的功能之一,因為它對設備的整體效率起著巨大的作用。本文檔介紹了功率因數校正 (PFC)的基本事實和原理以及管理該功能的法規。它還討論了常見的原因
2023-10-05 15:56:001056
評論
查看更多