求一個simulink的蓄電池用BP神經(jīng)網(wǎng)絡(luò)PID控制電機加速勻速減速運動的模型仿真
2020-02-22 02:17:03
一文看懂BP神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)數(shù)學(xué)知識
2020-06-16 07:14:35
第1章 BP神經(jīng)網(wǎng)絡(luò)的數(shù)據(jù)分類——語音特征信號的分類
2020-04-28 08:05:42
神經(jīng)元 第3章 EBP網(wǎng)絡(luò)(反向傳播算法) 3.1 含隱層的前饋網(wǎng)絡(luò)的學(xué)習(xí)規(guī)則 3.2 Sigmoid激發(fā)函數(shù)下的BP算法 3.3 BP網(wǎng)絡(luò)的訓(xùn)練與測試 3.4 BP算法的改進 3.5 多層
2012-03-20 11:32:43
問題,一個是神經(jīng)網(wǎng)絡(luò)的移植,另一個是STM32的計算速度。神經(jīng)網(wǎng)絡(luò)的移植網(wǎng)絡(luò)采用的是最簡單的BP神經(jīng)網(wǎng)絡(luò),基本原理可以自己去了解一下,大概就是通過若干次矩陣運算AX+BAX+BAX+B將m個輸入對應(yīng)到n
2022-01-11 06:20:53
MATLAB神經(jīng)網(wǎng)絡(luò)工具箱函數(shù)說明:本文檔中所列出的函數(shù)適用于MATLAB5.3以上版本,為了簡明起見,只列出了函數(shù)名,若需要進一步的說明,請參閱MATLAB的幫助文檔。1. 網(wǎng)絡(luò)創(chuàng)建函數(shù)newp
2009-09-22 16:10:08
卡爾曼濾波的神經(jīng)網(wǎng)絡(luò)可以解決諸如BP網(wǎng)絡(luò)的一些缺陷。為大家提供幾篇這方面的參考文獻。
2011-02-28 09:29:36
請問:我在用labview做BP神經(jīng)網(wǎng)絡(luò)實現(xiàn)故障診斷,在NI官網(wǎng)找到了機器學(xué)習(xí)工具包(MLT),但是里面沒有關(guān)于這部分VI的幫助文檔,對于”BP神經(jīng)網(wǎng)絡(luò)分類“這個范例有很多不懂的地方,比如
2017-02-22 16:08:08
上的USB攝像頭作為主要傳感器,采集得到的前方道路圖像經(jīng)過數(shù)據(jù)預(yù)處理后,接入神經(jīng)網(wǎng)絡(luò)的輸入層,由神經(jīng)網(wǎng)絡(luò)的輸出層狀態(tài)將生成控制信號,控制小車的直走、左轉(zhuǎn)、右轉(zhuǎn)、與停止。交通標(biāo)識識別功能同樣使用USB
2019-03-02 23:10:52
今天學(xué)習(xí)了兩個神經(jīng)網(wǎng)絡(luò),分別是自適應(yīng)諧振(ART)神經(jīng)網(wǎng)絡(luò)與自組織映射(SOM)神經(jīng)網(wǎng)絡(luò)。整體感覺不是很難,只不過一些最基礎(chǔ)的概念容易理解不清。首先ART神經(jīng)網(wǎng)絡(luò)是競爭學(xué)習(xí)的一個代表,競爭型學(xué)習(xí)
2019-07-21 04:30:00
`BP神經(jīng)網(wǎng)絡(luò)首先給出只包含一個隱層的BP神經(jīng)網(wǎng)絡(luò)模型(兩層神經(jīng)網(wǎng)絡(luò)): BP神經(jīng)網(wǎng)絡(luò)其實由兩部分組成:前饋神經(jīng)網(wǎng)絡(luò):神經(jīng)網(wǎng)絡(luò)是前饋的,其權(quán)重都不回送到輸入單元,或前一層輸出單元(數(shù)據(jù)信息是單向
2019-07-21 04:00:00
人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,ANN)是一種類似生物神經(jīng)網(wǎng)絡(luò)的信息處理結(jié)構(gòu),它的提出是為了解決一些非線性,非平穩(wěn),復(fù)雜的實際問題。那有哪些辦法能實現(xiàn)人工神經(jīng)網(wǎng)絡(luò)呢?
2019-08-01 08:06:21
簡單理解LSTM神經(jīng)網(wǎng)絡(luò)
2021-01-28 07:16:57
請問用matlab編程進行BP神經(jīng)網(wǎng)絡(luò)預(yù)測時,訓(xùn)練結(jié)果很多都是合適的,但如何確定最合適的?且如何用最合適的BP模型進行外推預(yù)測?
2014-02-08 14:23:06
神經(jīng)網(wǎng)絡(luò)隱藏層節(jié)點數(shù)效率最優(yōu)值
2019-06-28 07:33:27
求大神們 給點關(guān)于開關(guān)磁阻電機的matlab BP神經(jīng)網(wǎng)絡(luò)數(shù)學(xué)建模方面的資料
2014-11-17 11:16:43
本文首先簡單的選取了少量的樣本并進行樣本歸一化,這樣就得到了可供訓(xùn)練的訓(xùn)練集和測試集。然后訓(xùn)練了400×25×2的三層BP神經(jīng)網(wǎng)絡(luò),最后對最初步的模型進行了誤差分析并找到了一種效果顯著的提升方法!
2021-07-12 06:49:37
卷積神經(jīng)網(wǎng)絡(luò)(CNN)究竟是什么,鑒于神經(jīng)網(wǎng)絡(luò)在工程上經(jīng)歷了曲折的歷史,您為什么還會在意它呢? 對于這些非常中肯的問題,我們似乎可以給出相對簡明的答案。
2019-07-17 07:21:50
propagation algorithm,BP)[22]。BP 算法采用 Sigmoid 進行非線性映射,有效解決了 非線性分類和學(xué)習(xí)的問題,掀起了神經(jīng)網(wǎng)絡(luò)第二次 研究高潮。BP 網(wǎng)絡(luò)是迄今為止最常用的神經(jīng)網(wǎng)絡(luò), 目前
2022-08-02 10:39:39
卷積神經(jīng)網(wǎng)絡(luò)的層級結(jié)構(gòu) 卷積神經(jīng)網(wǎng)絡(luò)的常用框架
2020-12-29 06:16:44
為提升識別準(zhǔn)確率,采用改進神經(jīng)網(wǎng)絡(luò),通過Mnist數(shù)據(jù)集進行訓(xùn)練。整體處理過程分為兩步:圖像預(yù)處理和改進神經(jīng)網(wǎng)絡(luò)推理。圖像預(yù)處理主要根據(jù)圖像的特征,將數(shù)據(jù)處理成規(guī)范的格式,而改進神經(jīng)網(wǎng)絡(luò)推理主要用于輸出結(jié)果。 整個過程分為兩個步驟:圖像預(yù)處理和神經(jīng)網(wǎng)絡(luò)推理。需要提前安裝Tengine框架,
2021-12-23 08:07:33
最近一個月的時間沒有更博,跟隨老師出差談項目了。前段時間學(xué)習(xí)了電機的智能控制,這次把設(shè)計好的基于BP神經(jīng)網(wǎng)絡(luò)PID控制器應(yīng)用于雙閉環(huán)直流調(diào)速系統(tǒng)。雙閉環(huán)直流調(diào)速系統(tǒng)的動態(tài)數(shù)學(xué)模型如下圖所示: 外環(huán)為
2021-06-28 12:03:44
最近在學(xué)習(xí)電機的智能控制,上周學(xué)習(xí)了基于單神經(jīng)元的PID控制,這周研究基于BP神經(jīng)網(wǎng)絡(luò)的PID控制。神經(jīng)網(wǎng)絡(luò)具有任意非線性表達能力,可以通過對系統(tǒng)性能的學(xué)習(xí)來實現(xiàn)具有最佳組合的PID控制。利用BP
2021-09-07 07:43:47
摘 要:本文給出了采用ADXL335加速度傳感器來采集五個手指和手背的加速度三軸信息,并通過ZigBee無線網(wǎng)絡(luò)傳輸來提取手勢特征量,同時利用BP神經(jīng)網(wǎng)絡(luò)算法進行誤差分析來實現(xiàn)手勢識別的設(shè)計方法
2018-11-13 16:04:45
基于BP神經(jīng)網(wǎng)絡(luò)的辨識
2018-01-04 13:37:27
FPGA實現(xiàn)神經(jīng)網(wǎng)絡(luò)關(guān)鍵問題分析基于FPGA的ANN實現(xiàn)方法基于FPGA的神經(jīng)網(wǎng)絡(luò)的性能評估及局限性
2021-04-30 06:58:13
`點擊學(xué)習(xí)>>《龍哥手把手教你學(xué)LabVIEW視覺設(shè)計》視頻教程用LabVIEW實現(xiàn)的BP人工神經(jīng)網(wǎng)絡(luò)曲線擬合,感謝LabVIEW的矩陣運算函數(shù),程序流程較之文本型語言清晰很多。[hide] [/hide]`
2011-12-13 16:41:43
本文介紹了基于三層前饋BP神經(jīng)網(wǎng)絡(luò)的圖像壓縮算法,提出了基于FPGA的實現(xiàn)驗證方案,詳細(xì)討論了實現(xiàn)該壓縮網(wǎng)絡(luò)組成的重要模塊MAC電路的流水線設(shè)計。
2021-05-06 07:01:59
基于遺傳優(yōu)化神經(jīng)網(wǎng)絡(luò)的電子舌在黃酒檢測中的應(yīng)用采用遺傳學(xué)習(xí)算法和誤差反向傳播(BP)算法相結(jié)合的混合算法來訓(xùn)練前饋人工神經(jīng)網(wǎng)絡(luò),從而提高神經(jīng)網(wǎng)絡(luò)的收斂質(zhì)量和收斂速度,并將此算法運用到電子舌對黃酒
2009-09-19 09:32:15
如何用stm32cube.ai簡化人工神經(jīng)網(wǎng)絡(luò)映射?如何使用stm32cube.ai部署神經(jīng)網(wǎng)絡(luò)?
2021-10-11 08:05:42
原文鏈接:http://tecdat.cn/?p=5725 神經(jīng)網(wǎng)絡(luò)是一種基于現(xiàn)有數(shù)據(jù)創(chuàng)建預(yù)測的計算系統(tǒng)。如何構(gòu)建神經(jīng)網(wǎng)絡(luò)?神經(jīng)網(wǎng)絡(luò)包括:輸入層:根據(jù)現(xiàn)有數(shù)據(jù)獲取輸入的層隱藏層:使用反向傳播優(yōu)化輸入變量權(quán)重的層,以提高模型的預(yù)測能力輸出層:基于輸入和隱藏層的數(shù)據(jù)輸出預(yù)測
2021-07-12 08:02:11
,并能在腦海中重現(xiàn)這些圖像信息,這不僅與人腦的海量信息存儲能力有關(guān),還與人腦的信息處理能力,包括數(shù)據(jù)壓縮能力有關(guān)。在各種神經(jīng)網(wǎng)絡(luò)中,多層前饋神經(jīng)網(wǎng)絡(luò)具有很強的信息處理能力,由于其采用BP算法,因此也
2019-08-08 06:11:30
例如BP神經(jīng)網(wǎng)絡(luò)
2018-03-07 19:44:24
求一個simulink的蓄電池用BP神經(jīng)網(wǎng)絡(luò)PID控制電機加速勻速減速運動的模型仿真
2020-02-22 02:15:50
求一個基于BP神經(jīng)網(wǎng)絡(luò)PID控制器應(yīng)用于雙閉環(huán)直流調(diào)速系統(tǒng)BP_PID控制器學(xué)習(xí)參數(shù)怎么設(shè)置?
2021-10-13 08:10:12
誰有利用LABVIEW 實現(xiàn)bp神經(jīng)網(wǎng)絡(luò)的程序啊(我用的版本是8.6的 )
2012-11-26 14:54:59
求高手,基于labview的BP神經(jīng)網(wǎng)絡(luò)算法的實現(xiàn)過程,最好有程序哈,謝謝!!
2012-12-10 14:55:50
參考文獻用labview編寫的一個3層BP神經(jīng)網(wǎng)絡(luò)程序
2015-05-28 10:35:08
請問用matlab編程進行BP神經(jīng)網(wǎng)絡(luò)預(yù)測時,訓(xùn)練結(jié)果很多都是合適的,但如何確定最合適的?且如何用最合適的BP模型進行外推預(yù)測?
2014-02-08 14:19:12
針對模糊神經(jīng)網(wǎng)絡(luò)訓(xùn)練采用BP算法比較依賴于網(wǎng)絡(luò)的初始條件,訓(xùn)練時間較長,容易陷入局部極值的缺點,利用粒子群優(yōu)化算法(PSO)的全局搜索性能,將PSO用于模糊神經(jīng)網(wǎng)絡(luò)的訓(xùn)練過程.由于基本PSO算法存在
2010-05-06 09:05:35
基于BP 神經(jīng)網(wǎng)絡(luò)能以任意精度逼近任何非線性連續(xù)函數(shù)的原理。通過在MATLAB環(huán)境下,對典型的不穩(wěn)定、非線性、強耦合的倒立擺系統(tǒng)建立了BP 神經(jīng)網(wǎng)絡(luò)辨識結(jié)構(gòu),并對辨識結(jié)果進
2009-05-27 11:54:14
14 基于BP 神經(jīng)網(wǎng)絡(luò)能以任意精度逼近任何非線性連續(xù)函數(shù)的原理。通過在MATLAB環(huán)境下,對典型的不穩(wěn)定、非線性、強耦合的倒立擺系統(tǒng)建立了BP 神經(jīng)網(wǎng)絡(luò)辨識結(jié)構(gòu),并對辨識結(jié)果
2009-05-27 13:28:53
21 為了從神經(jīng)網(wǎng)絡(luò)中獲取易于理解的知識,以小麥病害診斷為例,研究了BP 神經(jīng)網(wǎng)絡(luò)的規(guī)則抽取,提出一種基于結(jié)構(gòu)分析的BP 神經(jīng)網(wǎng)絡(luò)規(guī)則抽取方法。采用帶懲罰項的交錯熵誤差函
2009-07-30 09:18:09
13 本文討論了使用BP 神經(jīng)網(wǎng)絡(luò)PID 控制算法,并且將這種控制算法應(yīng)用在漂白工段的控制當(dāng)中。利用神經(jīng)網(wǎng)絡(luò)自學(xué)習(xí)能力,在線整定PID 控制參數(shù)。實踐證明BP 神經(jīng)網(wǎng)絡(luò)PID控制器具有
2009-08-15 10:27:36
34 應(yīng)用神經(jīng)網(wǎng)絡(luò)理論,建立了預(yù)測狀態(tài)監(jiān)測數(shù)據(jù)趨勢的BP 神經(jīng)網(wǎng)絡(luò)模型,并通MATLAB 實現(xiàn)了仿真編程。實驗中,選取多組數(shù)據(jù)對網(wǎng)絡(luò)進行了訓(xùn)練和測試,證實了算法和模型的有效性。
2009-09-11 15:53:10
26 本文介紹了BP神經(jīng)網(wǎng)絡(luò)的基本原理。由于BP神經(jīng)網(wǎng)絡(luò)有著神奇的非線性映射能力,通過構(gòu)造特殊的映射關(guān)系,獲得了一套基于BP神經(jīng)網(wǎng)絡(luò)的通用高效無損數(shù)據(jù)壓縮方案。通過試驗證明
2009-09-11 16:00:39
11 BP 神經(jīng)網(wǎng)絡(luò)是目前用于模擬電路故障診斷的神經(jīng)網(wǎng)絡(luò)之一。本文應(yīng)用BP 神經(jīng)網(wǎng)絡(luò)完成了實際電路最優(yōu)測試集的生成設(shè)計,驗證了基于BP 神經(jīng)網(wǎng)絡(luò)的最優(yōu)測試集的生成的可行性和有
2009-12-16 16:08:33
9 BP 神經(jīng)網(wǎng)絡(luò)在訓(xùn)練過程中容易出現(xiàn)局部最小從而無法獲得最優(yōu)解,在進行故障診斷時還會出現(xiàn)誤判的情況。針對這一問題,本文提出H-BP,簡神經(jīng)網(wǎng)絡(luò)故障診斷方法,該網(wǎng)絡(luò)結(jié)合Hop
2009-12-23 12:01:09
10 本文首先介紹了傳統(tǒng)的神經(jīng)網(wǎng)絡(luò)BP 算法的優(yōu)缺點,并結(jié)合模擬退火算法局部搜索全局的特點,提出將模擬退火算法和傳統(tǒng)的BP 算法相結(jié)合,形成一種新的BP 神經(jīng)網(wǎng)絡(luò)算法,有效的解
2010-01-09 11:57:05
12 提出了基于BP 神經(jīng)網(wǎng)絡(luò)的2DPCA 人臉識別算法。通過圖像預(yù)處理改善圖像質(zhì)量,降低圖像維數(shù),然后用2DPCA 進行特征提取,作為BP 神經(jīng)網(wǎng)絡(luò)的輸入,用改進的BP 神經(jīng)網(wǎng)絡(luò)作為分類
2010-01-18 12:27:14
18 為了提高胸癌識別的識別精度,提出了應(yīng)用反向傳播網(wǎng)絡(luò)(Back Propagation, BP)建立胸癌診斷。BP 網(wǎng)絡(luò)是一種典型的多層前饋型神經(jīng)網(wǎng)絡(luò),采用有監(jiān)督學(xué)習(xí)模式,利用均方誤差和梯
2010-01-20 16:02:24
21 BP神經(jīng)網(wǎng)絡(luò)的設(shè)計實例(MATLAB編程):例1 采用動量梯度下降算法訓(xùn)練 BP 網(wǎng)絡(luò)。 訓(xùn)練樣本定義如下: 輸入矢量為 p =[-1 -2 3 1
2010-02-08 13:20:08
125 為了減少傳統(tǒng)數(shù)值分析法由于厚度諧振而引起的結(jié)果錯誤問題,實現(xiàn)異向介質(zhì)高分析精度與高效率的共存,建立基于反向傳播多層前饋型神經(jīng)網(wǎng)絡(luò)(BP 神經(jīng)網(wǎng)絡(luò))的異向介質(zhì)電磁特性與
2010-02-09 14:57:45
7 在深入研究農(nóng)業(yè)氣象產(chǎn)量預(yù)報系統(tǒng)和BP神經(jīng)網(wǎng)絡(luò)工作原理的基礎(chǔ)上,針對現(xiàn)有系統(tǒng)預(yù)測精確性問題的不足,提出了基于BP神經(jīng)網(wǎng)絡(luò)的農(nóng)業(yè)氣象產(chǎn)量預(yù)報系統(tǒng)。在具體實現(xiàn)時,為了加快網(wǎng)絡(luò)
2010-02-23 14:16:44
6 采用神經(jīng)網(wǎng)絡(luò)控制方法! 建立了基于BP算法的神經(jīng)網(wǎng)絡(luò)有源消聲實驗系統(tǒng)" 實驗證明基于BP算法的有源消聲實驗系統(tǒng)具有良好的消聲效果和穩(wěn)定性"
2010-07-22 16:09:53
11 針對BP(Back Propagation)神經(jīng)網(wǎng)絡(luò)易陷入局部極
2011-03-07 14:59:59
99 提出了一種基于改進差分進化算法和 BP神經(jīng)網(wǎng)絡(luò) 的計算機網(wǎng)絡(luò)流量預(yù)測方法。利用差分進化算法的全局尋優(yōu)能力,快速地得到BP神經(jīng)網(wǎng)絡(luò)的權(quán)值和閾值;然后利用BP神經(jīng)網(wǎng)絡(luò)的非線性擬
2011-08-10 16:13:07
31 基于BP神經(jīng)網(wǎng)絡(luò)的PID控制器的研究與實現(xiàn):
2012-04-01 15:20:51
15 文中將BP神經(jīng)網(wǎng)絡(luò)的原理應(yīng)用于參數(shù)辨識過程,結(jié)合傳統(tǒng)的 PID控制算法,形成一種改進型BP神經(jīng)網(wǎng)絡(luò)PID控制算法。該算法利用BP神經(jīng)網(wǎng)絡(luò)建立系統(tǒng)參數(shù)模型,能夠跟蹤被控對象的變化,取
2012-07-16 15:53:08
51 基于BP神經(jīng)網(wǎng)絡(luò)的SVPWM算法的研究與仿真
2016-04-15 18:29:16
11 基于模擬退火算法改進的BP神經(jīng)網(wǎng)絡(luò)算法_周愛武
2017-01-03 17:41:32
0 基于PSO改進的BP神經(jīng)網(wǎng)絡(luò)數(shù)據(jù)手套手勢識別_李東潔
2017-01-07 15:26:08
3 基于PSO優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的逆運動學(xué)求解研究_趙建強
2017-01-31 15:22:44
1 BP神經(jīng)網(wǎng)絡(luò)在水質(zhì)參數(shù)預(yù)測中的應(yīng)用_張昕
2017-03-19 11:26:54
1 PCA_BP神經(jīng)網(wǎng)絡(luò)在降水預(yù)測中的應(yīng)用研究_季剛
2017-03-19 11:27:34
0 改進BP神經(jīng)網(wǎng)絡(luò)用于入侵檢測_丁玲
2017-03-19 11:30:43
1 基于BP神經(jīng)網(wǎng)絡(luò)的唇裂圖像研究_朱霞
2017-03-19 11:33:11
0 ACO_BP神經(jīng)網(wǎng)絡(luò)在電梯交通流預(yù)測中的應(yīng)用_萬健如
2017-03-19 18:58:18
4 BP神經(jīng)網(wǎng)絡(luò)模型與學(xué)習(xí)算法
2017-09-08 09:42:48
10 針對BP神經(jīng)網(wǎng)絡(luò)風(fēng)速預(yù)測中存在的結(jié)構(gòu)不確定以及網(wǎng)絡(luò)過度擬合的問題,利用遺傳算法的全局搜索能力和模糊聚類算法的數(shù)據(jù)篩選能力,分別對BP神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)與數(shù)據(jù)進行雙重優(yōu)化,提出了基于遺傳算法和聚類算法的改進BP神經(jīng)網(wǎng)絡(luò)風(fēng)速預(yù)測方法,仿真表明,改進風(fēng)速后的預(yù)測方法大大提高了風(fēng)速預(yù)測的準(zhǔn)確性。
2017-11-10 11:23:41
5 為提高大樣本集情況下BP神經(jīng)網(wǎng)絡(luò)的訓(xùn)練效率,提出了一種基于局部收斂權(quán)陣進化的BP神經(jīng)網(wǎng)絡(luò)MapReduce訓(xùn)練方法,以各Map任務(wù)基于其輸入數(shù)據(jù)分片訓(xùn)練產(chǎn)生的局部收斂權(quán)陣作為初始種群,在Reduce
2017-11-23 15:07:40
12 基于BP神經(jīng)網(wǎng)絡(luò)的辨識,1986年,Rumelhart等提出了誤差反向傳播神經(jīng)網(wǎng)絡(luò),簡稱BP網(wǎng)絡(luò)(Back Propagation),該網(wǎng)絡(luò)是一種單向傳播的多層前向網(wǎng)絡(luò)。
誤差反向傳播
2017-12-06 15:11:58
0 針對傳統(tǒng)稅收預(yù)測模型精度較低的問題,提出一種將Adaboost算法和BP神經(jīng)網(wǎng)絡(luò)相結(jié)合進行稅收預(yù)測的方法。該方法首先對歷年稅收數(shù)據(jù)進行預(yù)處理并初始化測試數(shù)據(jù)分布權(quán)值;然后初始化BP神經(jīng)網(wǎng)絡(luò)權(quán)值和閾值
2018-02-27 16:51:44
0 BP 神經(jīng)網(wǎng)絡(luò)是一類基于誤差逆向傳播 (BackPropagation, 簡稱 BP) 算法的多層前饋神經(jīng)網(wǎng)絡(luò),BP算法是迄今最成功的神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)算法。現(xiàn)實任務(wù)中使用神經(jīng)網(wǎng)絡(luò)時,大多是在使用 BP
2018-06-19 15:17:15
42815 
本視頻主要詳細(xì)介紹了神經(jīng)網(wǎng)絡(luò)分類,分別是BP神經(jīng)網(wǎng)絡(luò)、RBF(徑向基)神經(jīng)網(wǎng)絡(luò)、感知器神經(jīng)網(wǎng)絡(luò)、線性神經(jīng)網(wǎng)絡(luò)、自組織神經(jīng)網(wǎng)絡(luò)、反饋神經(jīng)網(wǎng)絡(luò)。
2019-04-02 15:29:22
12597 本文檔的主要內(nèi)容詳細(xì)介紹的是BP神經(jīng)網(wǎng)絡(luò)的簡單MATLAB實例免費下載。
2019-08-21 08:00:00
5 自學(xué)習(xí)、加權(quán)系數(shù)調(diào)整,實現(xiàn)PID 的最優(yōu)調(diào)整,本文以小車控制為例,利用BP 神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)能力進行PID 參數(shù)的在線整定,并進行了MATLAB 仿真,結(jié)果明,利用BP 神經(jīng)網(wǎng)絡(luò)可很快的找到PID 的控制參數(shù)。
2019-10-11 16:06:48
38 BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋神經(jīng)網(wǎng)絡(luò),其主要的特點是:信號是前向傳播的,而誤差是反向傳播的。具體來說,對于如下的只含一個隱層的神經(jīng)網(wǎng)絡(luò)模型:輸入向量應(yīng)為n個特征
2020-09-24 11:51:35
12806 
個 2×3×1 的神經(jīng)網(wǎng)絡(luò)即輸入層有兩個節(jié)點, 隱層含三個節(jié)點, 輸出層有一個節(jié)點,神經(jīng)網(wǎng)絡(luò)如圖示。
2021-03-25 10:03:05
10 BP神經(jīng)網(wǎng)絡(luò)基本原理資料免費下載。
2021-04-25 15:36:16
16 BP神經(jīng)網(wǎng)絡(luò)原理及應(yīng)用說明。
2021-04-27 10:48:11
14 人工智能-BP神經(jīng)網(wǎng)絡(luò)算法的簡單實現(xiàn)說明。
2021-05-25 11:30:16
12 通過對傳統(tǒng)BP神經(jīng)網(wǎng)絡(luò)缺點的分析,從參數(shù)選取、BP算法、激活函數(shù)、網(wǎng)絡(luò)結(jié)構(gòu)4個方面綜述了其改進方法。介紹了各種方法的原理、應(yīng)用背景及其在BP神經(jīng)網(wǎng)絡(luò)中的應(yīng)用,同時分析了各種方法的優(yōu)缺點。指出不斷提高網(wǎng)絡(luò)的訓(xùn)練速度、收斂性和泛化能力仍是今后的研究方向,并展望了BP神經(jīng)網(wǎng)絡(luò)的研究重點。
2021-06-01 11:28:43
5 神經(jīng)網(wǎng)絡(luò)及BP與RBF的比較說明。
2021-06-18 09:59:11
22 基于BP神經(jīng)網(wǎng)絡(luò)優(yōu)化的光伏發(fā)電預(yù)測模型
2021-06-27 16:16:26
35 基于BP神經(jīng)網(wǎng)絡(luò)的胰島素評價模型
2021-07-02 11:20:22
34 BP(BackPropagation)反向傳播神經(jīng)網(wǎng)絡(luò)介紹及公式推導(dǎo)(電源和地電氣安全間距)-該文檔為BP(BackPropagation)反向傳播神經(jīng)網(wǎng)絡(luò)介紹及公式推導(dǎo)詳述資料,講解的還不錯,感興趣的可以下載看看…………………………
2021-07-26 10:31:32
48 一、BP神經(jīng)網(wǎng)絡(luò)三相逆變器故障診斷簡介 針對三相橋式逆變電路為研究對象,建立了仿真模型,并對逆變器主電路開關(guān)器件的開路故障進行仿真,提出了基于BP神經(jīng)網(wǎng)絡(luò)的故障診斷方法,確定了網(wǎng)絡(luò)的結(jié)構(gòu)和參數(shù),并以
2023-03-02 10:42:35
14 人工神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別? 人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network, ANN)是一種模仿人腦神經(jīng)元網(wǎng)絡(luò)結(jié)構(gòu)和功能的計算模型,也被稱為神經(jīng)網(wǎng)絡(luò)(Neural
2023-08-22 16:45:18
2941 訓(xùn)練經(jīng)過約50次左右迭代,在訓(xùn)練集上已經(jīng)能達到99%的正確率,在測試集上的正確率為90.03%,單純的BP神經(jīng)網(wǎng)絡(luò)能夠提升的空間不大了,但kaggle上已經(jīng)有人有卷積神經(jīng)網(wǎng)絡(luò)在測試集達到了99.3%的準(zhǔn)確率。
2024-03-20 09:58:44
38 
評論