在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

通過TensorFlow游樂場來了解神經(jīng)網(wǎng)絡(luò)

倩倩 ? 來源:私地創(chuàng)造空間 ? 2020-04-17 14:37 ? 次閱讀

TensorFlow游樂場是一個通過網(wǎng)頁瀏覽器就可以訓(xùn)練的簡單神經(jīng)網(wǎng)絡(luò)并實(shí)現(xiàn)了可視化訓(xùn)練過程的工具。這個網(wǎng)頁在百度上,只要搜索TensorFlow playground基本都能出來。

TensorFlow游樂場界面

最左側(cè)提供了4個不同的數(shù)據(jù)集來測試神經(jīng)網(wǎng)絡(luò),默認(rèn)的是選中的第一個。最右面的大圖也是顯示被選中的數(shù)據(jù)集。在這個數(shù)據(jù)中,可以看到一個二維平面上有藍(lán)點(diǎn)和橘點(diǎn),每個小點(diǎn)代表了一個樣例,而點(diǎn)的顏色代表了樣例的標(biāo)簽。因?yàn)辄c(diǎn)的顏色只有兩種,所以這是一個二分類的問題。

訓(xùn)練129輪后的結(jié)果

一個小格子代表神經(jīng)網(wǎng)絡(luò)中的一個節(jié)點(diǎn),而邊代表節(jié)點(diǎn)之間的連接。每一個節(jié)點(diǎn)和邊都被涂上了顏色,但邊上的顏色和格子中的顏色含義有略微的區(qū)別。每一條邊代表了神經(jīng)網(wǎng)絡(luò)中的一個參數(shù),它可以是任意實(shí)數(shù)。如果把這個平面當(dāng)成一個卡迪爾坐標(biāo)系,這個平面的每一個點(diǎn)就代表了(x1,x2)的一種取值。而這個點(diǎn)的顏色就體現(xiàn)了這種取值下這個節(jié)點(diǎn)的輸出值。

綜合所述,使用神經(jīng)網(wǎng)絡(luò)解決分類問題主要可以分為以下4個步驟。

提取問題中實(shí)體的特征向量作為神經(jīng)網(wǎng)絡(luò)的輸入

定義神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu),并定義如何從神經(jīng)網(wǎng)絡(luò)的輸入得到輸出。

通過訓(xùn)練數(shù)據(jù)來調(diào)整神經(jīng)網(wǎng)絡(luò)中的參數(shù)的取值,這就是訓(xùn)練神經(jīng)網(wǎng)絡(luò)的過程。

使用訓(xùn)練好的神經(jīng)網(wǎng)絡(luò)來預(yù)測未知的數(shù)據(jù)。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4785

    瀏覽量

    101294
  • 數(shù)據(jù)集
    +關(guān)注

    關(guān)注

    4

    文章

    1211

    瀏覽量

    24890
  • tensorflow
    +關(guān)注

    關(guān)注

    13

    文章

    329

    瀏覽量

    60671
收藏 人收藏

    評論

    相關(guān)推薦

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    多層。 每一層都由若干個神經(jīng)元構(gòu)成,神經(jīng)元之間通過權(quán)重連接。信號在神經(jīng)網(wǎng)絡(luò)中是前向傳播的,而誤差是反向傳播的。 卷積神經(jīng)網(wǎng)絡(luò)(CNN) :
    的頭像 發(fā)表于 02-12 15:53 ?106次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)工具與框架

    卷積神經(jīng)網(wǎng)絡(luò)因其在圖像和視頻處理任務(wù)中的卓越性能而廣受歡迎。隨著深度學(xué)習(xí)技術(shù)的快速發(fā)展,多種實(shí)現(xiàn)工具和框架應(yīng)運(yùn)而生,為研究人員和開發(fā)者提供了強(qiáng)大的支持。 TensorFlow 概述
    的頭像 發(fā)表于 11-15 15:20 ?355次閱讀

    使用TensorFlow進(jìn)行神經(jīng)網(wǎng)絡(luò)模型更新

    使用TensorFlow進(jìn)行神經(jīng)網(wǎng)絡(luò)模型的更新是一個涉及多個步驟的過程,包括模型定義、訓(xùn)練、評估以及根據(jù)新數(shù)據(jù)或需求進(jìn)行模型微調(diào)(Fine-tuning)或重新訓(xùn)練。下面我將詳細(xì)闡述這個過程,并附上相應(yīng)的TensorFlow代碼
    的頭像 發(fā)表于 07-12 11:51 ?512次閱讀

    BP神經(jīng)網(wǎng)絡(luò)和人工神經(jīng)網(wǎng)絡(luò)的區(qū)別

    BP神經(jīng)網(wǎng)絡(luò)和人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks,簡稱ANNs)之間的關(guān)系與區(qū)別,是神經(jīng)網(wǎng)絡(luò)領(lǐng)域中一個基礎(chǔ)且重要的話題。本文將從定義、結(jié)構(gòu)、算法、應(yīng)用及未來發(fā)展等多個方面,詳細(xì)闡述BP
    的頭像 發(fā)表于 07-10 15:20 ?1419次閱讀

    rnn是遞歸神經(jīng)網(wǎng)絡(luò)還是循環(huán)神經(jīng)網(wǎng)絡(luò)

    RNN(Recurrent Neural Network)是循環(huán)神經(jīng)網(wǎng)絡(luò),而非遞歸神經(jīng)網(wǎng)絡(luò)。循環(huán)神經(jīng)網(wǎng)絡(luò)是一種具有時(shí)間序列特性的神經(jīng)網(wǎng)絡(luò),能夠處理序列數(shù)據(jù),具有記憶功能。以下是關(guān)于循環(huán)
    的頭像 發(fā)表于 07-05 09:52 ?695次閱讀

    遞歸神經(jīng)網(wǎng)絡(luò)是循環(huán)神經(jīng)網(wǎng)絡(luò)

    遞歸神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,簡稱RNN)和循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,簡稱RNN)實(shí)際上是同一個概念,只是不同的翻譯方式
    的頭像 發(fā)表于 07-04 14:54 ?936次閱讀

    bp神經(jīng)網(wǎng)絡(luò)和反向傳播神經(jīng)網(wǎng)絡(luò)區(qū)別在哪

    反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network,簡稱BP神經(jīng)網(wǎng)絡(luò))是一種多層前饋神經(jīng)網(wǎng)絡(luò),它通過反向傳播算法來調(diào)整網(wǎng)
    的頭像 發(fā)表于 07-04 09:51 ?581次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別在哪

    結(jié)構(gòu)、原理、應(yīng)用場景等方面都存在一定的差異。以下是對這兩種神經(jīng)網(wǎng)絡(luò)的詳細(xì)比較: 基本結(jié)構(gòu) BP神經(jīng)網(wǎng)絡(luò)是一種多層前饋神經(jīng)網(wǎng)絡(luò),由輸入層、隱藏層和輸出層組成。每個神經(jīng)元之間
    的頭像 發(fā)表于 07-04 09:49 ?1.3w次閱讀

    反向傳播神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

    反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network,簡稱BP神經(jīng)網(wǎng)絡(luò))是一種多層前饋神經(jīng)網(wǎng)絡(luò),它通過反向傳播算法來調(diào)整網(wǎng)
    的頭像 發(fā)表于 07-03 11:00 ?896次閱讀

    如何使用神經(jīng)網(wǎng)絡(luò)進(jìn)行建模和預(yù)測

    神經(jīng)網(wǎng)絡(luò)是一種強(qiáng)大的機(jī)器學(xué)習(xí)技術(shù),可以用于建模和預(yù)測變量之間的關(guān)系。 神經(jīng)網(wǎng)絡(luò)的基本概念 神經(jīng)網(wǎng)絡(luò)是一種受人腦啟發(fā)的計(jì)算模型,由大量的節(jié)點(diǎn)(神經(jīng)元)組成,這些節(jié)點(diǎn)
    的頭像 發(fā)表于 07-03 10:23 ?859次閱讀

    bp神經(jīng)網(wǎng)絡(luò)是深度神經(jīng)網(wǎng)絡(luò)

    Network)有相似之處,但它們之間還是存在一些關(guān)鍵的區(qū)別。 一、引言 神經(jīng)網(wǎng)絡(luò)是一種模擬人腦神經(jīng)元結(jié)構(gòu)的計(jì)算模型,它由大量的神經(jīng)元(或稱為節(jié)點(diǎn))組成,這些神經(jīng)
    的頭像 發(fā)表于 07-03 10:14 ?984次閱讀

    bp神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)區(qū)別是什么

    結(jié)構(gòu)、原理、應(yīng)用場景等方面都存在一定的差異。以下是對這兩種神經(jīng)網(wǎng)絡(luò)的比較: 基本結(jié)構(gòu) BP神經(jīng)網(wǎng)絡(luò)是一種多層前饋神經(jīng)網(wǎng)絡(luò),由輸入層、隱藏層和輸出層組成。每個神經(jīng)元之間
    的頭像 發(fā)表于 07-03 10:12 ?1425次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)和BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Networks,簡稱BPNN)是兩種
    的頭像 發(fā)表于 07-02 14:24 ?4896次閱讀

    如何使用Python進(jìn)行神經(jīng)網(wǎng)絡(luò)編程

    神經(jīng)網(wǎng)絡(luò)簡介 神經(jīng)網(wǎng)絡(luò)是一種受人腦啟發(fā)的機(jī)器學(xué)習(xí)模型,由大量的節(jié)點(diǎn)(或稱為“神經(jīng)元”)組成,這些節(jié)點(diǎn)在網(wǎng)絡(luò)中相互連接。每個節(jié)點(diǎn)可以接收輸入,對輸入進(jìn)行加權(quán)求和,然后
    的頭像 發(fā)表于 07-02 09:58 ?478次閱讀

    萬佳游樂場智能防雷減災(zāi)方案

    ? 萬佳游樂場智能防雷減災(zāi)方案
    的頭像 發(fā)表于 05-15 11:22 ?431次閱讀
    萬佳<b class='flag-5'>游樂場</b>智能防雷減災(zāi)方案
    主站蜘蛛池模板: 成熟妇女毛耸耸性视频 | 欧美亚洲韩国国产综合五月天 | 日本免费一区二区三区视频 | 久久免费视频2 | 欧美激情综合色综合啪啪五月 | 美女被免费网站视频九色 | 特级生活片 | 天天曰夜夜曰 | 四虎影酷| 天天摸夜夜摸爽爽狠狠婷婷97 | 久久婷婷国产精品香蕉 | 凹凸福利视频导航 | 四虎影院海外永久 | 婷婷综合影院 | 91md天美精东蜜桃传媒在线 | 毛色毛片免费观看 | 免费欧美黄色 | 最新国产你懂的在线网址 | 国产乱子伦一区二区三区 | 久久天天躁狠狠躁夜夜免费观看 | 四虎音影 | www视频在线观看天堂 | 四虎影院一级片 | 一级在线免费视频 | 国产女人水多白浆 | 天天视频官网天天视频在线 | 国产精品污视频 | 免费观看视频在线观看 | 在线麻豆国产传媒60在线观看 | 真人午夜a一级毛片 | 婷婷激情四射网 | 色五月丁香五月综合五月 | 免费黄色国产视频 | 色噜噜狠狠色综合久 | 亚综合 | 国产香蕉视频在线观看 | 亚洲最大的成人网 | 婷婷综合色 | 亚洲性视频网站 | 99精品热女视频专线 | 久久精品网站免费观看 |