在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

是什么對ADC的SFDR構成限制?

iIeQ_mwrfnet ? 來源:微波射頻網 ? 作者:Ian Beavers ? 2020-09-02 14:22 ? 次閱讀

在為高性能系統選擇寬帶模數轉換器(ADC)時,需要考慮多種模擬輸入參數,比如,ADC分辨率、采樣速率、信噪比(SNR)、有效位數(ENOB)、輸入帶寬、無雜散動態范圍(SFDR)以及微分或積分非線性度等。 對于GSPS ADC,最重要的一個交流性能參數可能就是SFDR。簡單而言,該參數規定了ADC以及系統從其他噪聲或者任何其他雜散頻率中解讀載波信號的能力。 為了實現GSPS ADC中所使用的轉換速率,可以采用以高采樣速率捕獲信號的多種架構。然而,使用其中一些架構時需要以犧牲全帶寬SFDR性能為代價。 為了認識轉換器SFDR對系統的影響,我們就設計工程師針對SFDR參數細節提出的一些常見問題進行了回答,同時對該參數在轉換器數據手冊中的描述方式、對ADC性能起著限制或促進作用的各種架構以及對SFDR性能形成限制的系統設計因素進行了說明。 我注意一以,數據手冊中關于SFDR的說明,有些列出了注意事項,有些沒有列出。到底什么是SFDR? 能夠區分信號和噪聲是許多信號采集系統的一個關鍵方面。無論明確的電信協議、雷達掃描,還是測量儀器,弱信號的采集和解碼是區分任何系統性能的核心所在。 SFDR表示可從大干擾信號分辨出的最小功率信號。它定義的是載波功率的均方根(rms)值與頻域(如快速傅里葉變換(FFT))中的下一個最大有效雜散信號的均方根值之間的動態比值。因此,根據定義,該動態范圍不得存在其他雜散頻率。 SFDR通常采用功率單位(dBc),量化為目標載波相對于下一個最大有效頻率的功率的范圍。然而,該參數也可以滿量程信號為基準,以功率單位(dBFS)為計量單位。這是一個重要的區別,因為目標載波可能是功率相對較低的信號,而且遠遠低于至ADC的滿量程輸入。當情況確實如此時,SFDR在區分信號與其他噪聲和雜散頻率時變得至關重要。

是什么對ADC的SFDR構成限制?

諧波頻率是基波頻率的整數倍數。對于設計良好的單芯片ADC內核,SFDR一般主要由載波頻率與目標基波頻率的第二或第三諧波之間的動態范圍構成。一些窄帶ADC數據手冊只會定義較窄的工作頻帶內的SFDR,這種情況下,第二和第三諧波一般都位于帶外。其他數據手冊可能描述較寬帶寬內的SFDR,同時就實現該性能要滿足的條件做出說明。盡管第二或第三諧波一般可能是主導雜散頻率,但由于存在其他系統原因,有些雜散也可能會限制GSPS ADC的SFDR性能。例如,多個交錯ADC內核可能會把交錯偽像帶入頻域,從而產生雜散頻率。這些在量級上有可能比基波頻率的第二或第三諧波大。因此,它們會成為SFDR的主導限制因素。盡管這可能不符合直覺,但在交錯ADC數據手冊中,SFDR參數值可能會伴隨一條警告消息,稱計算時未納入交錯雜散(圖1)。

圖1.這是一款單芯片12位ADC的FFT,其中,第三諧波為SFDR的主要貢獻因素。在這種情況下,從基波(–1 dBFS)到第三諧波(–82 dBFS)的動態范圍為–81 dBc,因為動態范圍是相對于載波功率的。

窄帶SFDR要以外推至寬帶SFDR嗎?

如果系統只需要較窄的頻帶,則可使用帶通抗混疊輸入濾波器來抑制目標頻帶以外的諧波或偽像。只要無需觀察濾波頻帶范圍內的信號,這對某些應用來說可能非常有效。但對于帶寬信號采集系統來說,這卻是不可行的。在有些數據手冊中,ADC的SFDR參數值也可能針對的是很窄的一部分帶寬,要比ADC的滿量程輸入帶寬小得多。 一般地,我們不能假定,可對針對窄頻帶的SFDR進行外推,以在較寬或滿量程奈奎斯特頻帶(即Fs/2)中獲得相同的性能。其主要原因在于,針對基波窄帶的頻率規劃的目的就是過濾掉較高諧波并將其推至目標頻帶以外。如果移除濾波器,則這些諧波和其他雜散將成為系統中寬帶SFDR的一部分(圖2和圖3)。

圖2.實際上,窄帶應用可能使用寬帶SFDR較差的ADC。利用抗混疊濾波器來抑制紅色陰影區域的頻率,就可以將會導致SFDR性能下降的任何諧波或雜散過濾到帶外。

圖3.運用相同的條件,同時假定移除ADC濾波,結果,寬帶諧波或雜散會對SFDR形成限制。這種情況表明,將優良的窄帶SFDR外推至寬帶SFDR是不可行的。

差分輸入ADC的SFDR可能受到其他前端系統元件的影響嗎?

多數高速ADC采用一種差分輸入結構,具有良好的共模噪聲抑制能力。然而,這需要許多采集系統在ADC輸入前端將單端信號轉換成差分信號。對于從單端到差分信號的這一轉換過程,主要選擇是無源巴倫或變壓器及有源放大器。雖然系統的這一部分有許多高性能元件可供選擇,但是,即使最好的解決方案也會存在一些較小的差分不平衡,結果會使目標信號失真,并減小通過ADC的SFDR。 ADC前端的差分輸入信號各端之間的相位失配會導致基波信號諧波功率增加。當差分信號的一端在時間上先于另一端且提前量達到相對于其周期的一定相位量時,就可能發生這種情況。其效應如圖4所示,此時,差分對的一端比另一端提前較小的周期相位量。

圖4.這種情況下,巴倫輸出與ADC差分輸入之間存在幾度的相位失配。如果差分輸入在相位上完全匹配,這可能導致FFT中的第二諧波比其他情況下高,從而對SFDR造成影響。

差分信號采集系統前端的另一不平衡可能是幅度失配。當差分信號一端的增益不同于其補碼時,ADC輸入就會把一端視為較大信號,另一端視為較小信號。在其他情況下,這會減小基波信號的全功率,降低SFDR的dBc值。差分輸入端如果存在2-dB的幅度失配,結果會導致滿量程輸入信號功率下降1-dB。這些前端信號完整性方面的每個問題都可能使ADC的SFDR性能以及整個系統的信號解碼能力下降。

可能限制SFDR的ADC架構有哪些?

采樣速率達到且超過1 GSPS的幾種ADC采用一種交錯方案,利用一對或幾個分立通道或內核來實現完全高速數據速率。例如,可以基于交錯方案,用一個雙通道ADC來實現完全采樣速率,其中,每個內核輪流使用采樣過程。當一個通道在采樣時,另一通道將處理前面的采樣。交錯架構也可使用3個或更多ADC內核。

采用交錯方法時,多個ADC內核可以并行工作,從而實現高于單核的采樣速率。然而,每個這些內核的輸入端之間都存在相位、失調、增益和帶寬微小差異。結果,新的交錯偽像和圖像雜散可能進入頻譜中,從而導致ADC寬帶SFDR下降。這會減小系統的動態范圍,降低其分辨弱目標信號與交錯雜散的能力。為了緩解交錯ADC看到的偽像,系統設計師可能需要仔細閱讀應用筆記,了解特殊校準模式和方法,以便對雜散做出細致的安排。 只有一個處理內核的單芯片ADC架構不會出現交錯雜散。例如,作為一種寬帶轉換器,單核流水線ADC都會標榜相對較高的SFDR,一般受第二或第三諧波的限制。

交錯ADC的性能在頻域中有著怎樣的表現?

對于由三個分立交錯內核構成的采樣架構,有兩個增益和相位圖像雜散及一個失調雜散(圖5)??稍?/3 × 奈奎斯特頻率時看到失調雜散,但在這種情況下,失調雜散并非SFDR的主要貢獻因素。SFDR限制增益和相位雜散可在(2/3 × 奈奎斯特頻率±模擬輸入頻率)時看到。

圖5.在該FFT中,在一個交錯系統板上采用了三個分立式ADC。請注意,關聯交錯雜散偽像會給SFDR帶來–8 dBc的限制,而第二諧波為–85 dBFS。 幅度上最大的雜散是系統SFDR的最大貢獻因素。如果沒有交錯雜散,SFDR將是從基波頻率到第二諧波的動態范圍。在這種具體情況下,交錯圖像雜散會導致SFDR性能下降–8-dB。 對于由四個分立交錯內核構成的采樣架構,有三個增益和相位圖像雜散及兩個失調雜散(圖6)。在奈奎斯特頻率以及? × 奈奎斯特頻率下存在失調雜散,在(奈奎斯特頻率–模擬輸入頻率)下另有一個圖像雜散,但在這種情況下,這些都不是SFDR的主要貢獻因素。主要增益和相位雜散可在(1/2 ×奈奎斯特頻率±模擬輸入頻率)時看到。

圖6.在該FFT中,在一個交錯系統板上采用了4個分立式ADC。請注意,關聯圖像雜散偽像會在? × 奈奎斯特頻率 ± Ain時影響SFDR,給SFDR帶來–13 dBc的限制,而第三諧波為–84 dBFS。 如果這些雜散的幅度大于第二或第三諧波,則會成為系統中SFDR的主要貢獻因素。如果沒有交錯雜散,SFDR將是從基波頻率到第三諧波的動態范圍。在這種具體情況下,交錯圖像雜散會導致SFDR性能下降–13-dB。

SFDR的其他限制因素

造成SFDR性能下降的另一潛在領域是系統設計,即在設計允許外部噪聲耦合到ADC的模擬輸入端或時鐘輸入端時。另外,如果系統板布局規劃不當,ADC的數字輸出端有可能耦合回輸入端。外部噪聲也可能耦合到ADC的基準電壓源、電源或接地域上。如果噪聲足夠大且具有半周期性,則會在系統的頻域中表現為無用的SFDR限制雜散,與基波頻率或ADC架構均無關系。

GSPS ADC的未來發展趨勢

具有高寬帶SFDR的GSPS ADC目前已經上市,這類器件不存在過去曾對系統性能形成限制的交錯偽像。AD9860是一款雙通道、14位、1-GSPS ADC,可在1-GHz輸入下實現78 dBc的SFDR。AD9625是一款12位、2-GSPS ADC,可在1-GHz輸入下實現80 dBc的典型寬帶SFDR。 SFDR是GSPS和ADC的一個重要而關鍵的性能指標。寬帶SFDR一般受基波信號第二或第三諧波的限制。單通道單芯片流水線ADC及其他高級架構為高性能GSPS轉換器開創了一個新的前沿。在頻域中,它們不存在ADC架構過去在GSPS空間所表現的交錯雜散。

對于要求寬帶響應的應用,查看、規劃和移除這些偽像可能面臨諸多問題。新型解決方案可以解決這些系統問題,同時還能在整個寬帶頻譜內提供最先進的SFDR性能。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 轉換器
    +關注

    關注

    27

    文章

    8885

    瀏覽量

    150140
  • adc
    adc
    +關注

    關注

    99

    文章

    6611

    瀏覽量

    547731
  • GSPS
    +關注

    關注

    0

    文章

    48

    瀏覽量

    17245

原文標題:認識寬帶GSPS ADC中的無雜散動態范圍

文章出處:【微信號:mwrfnet,微信公眾號:微波射頻網】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    使用ad9467-250來采集低頻信號,請問有什么方法來提高sfdr嗎?

    你好,我現在在使用ad9467-250來采集低頻信號,在測試3Mhz部分時sfdr只有86,采樣頻率是102.4Mhz,請問有什么方法來提高sfdr
    發表于 04-24 06:05

    AD8352 2GHz超低失真差分射頻/中頻放大器技術手冊

    AD8352是一款高性能差分放大器,并針對射頻和中頻應用進行了優化。在最高200 MHz頻率時,無雜散動態范圍(SFDR)優于80 dB;在500 MHz以上頻率時,SFDR優于65 dB,因而成為高速12位至16位模數轉換器(ADC
    的頭像 發表于 03-18 11:21 ?230次閱讀
    AD8352 2GHz超低失真差分射頻/中頻放大器技術手冊

    ADA4960-1低功耗、超高速度差分ADC驅動器技術手冊

    ADA4960-1是一款高性能差分放大器,已針對射頻和中頻應用進行優化。在最高500 MHz頻率時,無雜散動態范圍(SFDR)優于63 dB;在最高1 GHz頻率時,SFDR優于52 dB,因而它是高速8位至10位千兆采樣模數轉換器(A
    的頭像 發表于 03-14 13:52 ?269次閱讀
    ADA4960-1低功耗、超高速度差分<b class='flag-5'>ADC</b>驅動器技術手冊

    使用DAC904E輸出有一個2fs - fc的雜散,很大,導致DAC SFDR指標只有不到30dB,怎么解決?

    我現在在使用DAC904E,發現其輸出有一個2fs - fc的雜散,很大,導致DAC SFDR指標只有不到30dB。 如果有相應的Application Note供閱讀是最好的。謝謝!
    發表于 02-07 06:44

    閱讀ADS828數據手冊時SWEPT POWER SFDR是什么意思

    ADS828在閱讀ADS828數據手冊時,看到SWEPT POWER SFDR,這是什么意思?
    發表于 01-20 08:31

    ADC12D1600計算SFDR得出的數值只有30dB,主要是2次諧波太大了,如何消除2次諧波?

    如題,計算SFDR得出的數值只有30dB,主要是2次諧波太大了,如何消除2次諧波?
    發表于 12-16 06:03

    使用ADC12DJ3200做采樣系統時,發現SFDR受限于交織雜散,有什么方法降低Fs/2-Fin處的雜散?

    我在使用ADC12DJ3200做采樣系統時,發現SFDR受限于交織雜散,在開了前景校準和offset filtering后,Fs/4和Fs/2處的雜散明顯變小,但是Fs/2-Fin雜散仍然很大。請問有什么方法降低Fs/2-Fin處的雜散?多謝回答!
    發表于 12-13 15:14

    adc12d1600給一個高電平信號之后,SFDR質量變好了是什么原因?

    如題,在上電之后,采集到一組數據,SFDR只有30dB,但是,這時候給一個高電平信號,如10dbm,再將信號電平調回之前的電平,重新采集一組數據,這次SFDR可以達到手冊上的50多60dB。這個高電平信號對ADC改變了什么?
    發表于 12-13 08:44

    不同類型adc的優缺點分析

    ADC) 優點 高精度 :SAR ADC通常提供較高的分辨率,適合需要高精度測量的應用。 低功耗 :與某些其他類型的ADC相比,SAR ADC在低至中等采樣率下功耗較低。 成本效益
    的頭像 發表于 11-19 16:58 ?2277次閱讀

    最大限度地提高GSPS ADC中的SFDR性能:雜散源和Mitigat方法

    電子發燒友網站提供《最大限度地提高GSPS ADC中的SFDR性能:雜散源和Mitigat方法.pdf》資料免費下載
    發表于 10-10 09:16 ?0次下載
    最大限度地提高GSPS <b class='flag-5'>ADC</b>中的<b class='flag-5'>SFDR</b>性能:雜散源和Mitigat方法

    請問LMH6702的輸出端為什么要接一個由22歐和10PF構成的低通濾波器呢?

    請問LMH6702的輸出端為什么要接一個由22歐和10PF構成的低通濾波器呢? 這樣算的話,(1/RC)=5MHZ,可是ADC08200可以200MHZ采樣,帶寬可達30MHZ,這樣一個低通濾波器不是限制了帶寬了么?
    發表于 09-20 07:14

    什么是無雜散動態范圍 (SFDR)?為什么 SFDR 很重要?

    ,我們先回答一個重要問題:在高速 ADC 中提高 SFDR 的主要限制是什么? ADC 中的靜態和動態線性 ADC 是基于多種不同電路架構設
    發表于 09-11 15:48

    在高速ADC中通過校準改進SFDR

    電子發燒友網站提供《在高速ADC中通過校準改進SFDR.pdf》資料免費下載
    發表于 08-30 10:59 ?0次下載
    在高速<b class='flag-5'>ADC</b>中通過校準改進<b class='flag-5'>SFDR</b>

    LMH3401 spice模型在cadence中仿真SFDR較差是什么原因?

    SFDR小于85dB,同時頻率越高,SFDR越小,50M時SFDR降至73dB,此外最大諧波均在HD3處,該結果遠差于datasheet中Figure13所給的測試結果,請問這是什么原因呢?附上仿真平臺和仿真結果
    發表于 07-29 08:29

    運算放大器失真:HD、THD、THD + N、IMD、SFDR、MTPR說明

    電子發燒友網站提供《運算放大器失真:HD、THD、THD + N、IMD、SFDR、MTPR說明.pdf》資料免費下載
    發表于 06-15 16:53 ?1次下載
    主站蜘蛛池模板: 久久性妇女精品免费 | 免费精品美女久久久久久久久久 | 久久99热精品免费观看无卡顿 | 天天好比网| 91精品国产免费久久久久久青草 | 亚洲国产精品久久久久婷婷老年 | 一区卡二区卡三区卡视频 | 免费观看午夜在线欧差毛片 | 国产拍拍1000部ww | 天堂网成人| 久久国模 | 深夜动态福利gif进出粗暴 | 99热这里只有精品一区二区三区 | 国产女主播在线播放一区二区 | 日本不卡免费高清一级视频 | 福利在线看片 | 日本精品一在线观看视频 | 男人资源站 | 色多多a| 日日夜夜天天干 | 国产性老妇女做爰在线 | 国产精品资源在线观看 | 国产三级 在线播放 | 伊人免费网 | 欧美成人猛男性色生活 | 伊人久久大香线蕉综合高清 | 色天使在线观看 | 日韩欧免费一区二区三区 | 日本免费色视频 | 午夜国产在线观看 | 天天干天天干天天干天天 | 亚洲免费一级片 | 第四色播日韩第一页 | 色色免费 | 狠狠色噜噜狠狠狠狠五月婷 | 不卡视频一区 | 久久久鲁 | 日本免费人成黄页网观看视频 | 久久久免费网站 | 亚洲 欧洲 另类 综合 自拍 | 韩国三级中文字幕hd |