在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

人工智能在雷達(dá)應(yīng)用中限制和發(fā)展前景和在實(shí)時(shí)對(duì)抗中的應(yīng)用

454398 ? 來源:ST社區(qū) ? 作者:ST社區(qū) ? 2023-02-03 14:40 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

來源:ST社區(qū)

人工智能是研究、開發(fā)用于模擬、延伸和擴(kuò)展人的智能理論、方法、技術(shù)及應(yīng)用系統(tǒng)的一門科學(xué)。雷達(dá)目標(biāo)識(shí)別技術(shù)是人工智能在裝備領(lǐng)域的重要應(yīng)用,隨著人工智能技術(shù)的發(fā)展,雷達(dá)識(shí)別也在不斷進(jìn)步,從模式識(shí)別、機(jī)器學(xué)習(xí)到近年來的發(fā)展迅猛的深度學(xué)習(xí)、遷移學(xué)習(xí)等在雷達(dá)識(shí)別中都有較多研究成果。

傳統(tǒng)雷達(dá)識(shí)別方法難以適應(yīng)復(fù)雜多變的戰(zhàn)場環(huán)境

現(xiàn)有雷達(dá)目標(biāo)識(shí)別常采用統(tǒng)計(jì)模式識(shí)別理論。模式識(shí)別主要利用統(tǒng)計(jì)學(xué)、概率論、計(jì)算幾何、機(jī)器學(xué)習(xí)、信號(hào)處理以及算法的設(shè)計(jì)等工具從可感知的數(shù)據(jù)中進(jìn)行推理的一門學(xué)科,其中心任務(wù)就是找出某類事物的本質(zhì)屬性,對(duì)于雷達(dá)目標(biāo)識(shí)別而言即首先根據(jù)雷達(dá)所跟蹤目標(biāo)的運(yùn)動(dòng)、回波等信息,提取目標(biāo)穩(wěn)定的且具有標(biāo)志性的特征,稱為識(shí)別特征模板,然后把待識(shí)別的模式劃分到各自模式類中。對(duì)于給定一個(gè)模式的識(shí)別/分類將面臨兩類任務(wù):監(jiān)督分類和無監(jiān)督分類,其中有監(jiān)督分類把模式劃分已有的類別中,而無監(jiān)督分類把模式劃分到未知的類別中。

人工智能在雷達(dá)應(yīng)用中的限制和發(fā)展前景

現(xiàn)有雷達(dá)常用識(shí)別方法在下文中稱為傳統(tǒng)雷達(dá)識(shí)別技術(shù)。特征提取是傳統(tǒng)雷達(dá)識(shí)別技術(shù)重要環(huán)節(jié),雷達(dá)識(shí)別特征強(qiáng)烈依賴于用人的先驗(yàn)知識(shí)和專業(yè)技能,雷達(dá)目標(biāo)識(shí)別算法的設(shè)計(jì)需要較深的目標(biāo)特性、特征提取的研究背景。

傳統(tǒng)雷達(dá)目標(biāo)識(shí)別也是依據(jù)所采用的特征不同而分為窄帶RCS特征識(shí)別、高分辨距離像特征識(shí)別、ISAR特征識(shí)別和運(yùn)動(dòng)特征識(shí)別、微動(dòng)特征識(shí)別等技術(shù)途徑。

傳統(tǒng)雷達(dá)目標(biāo)識(shí)別通常是接收雷達(dá)傳感器固定信息進(jìn)行數(shù)字信號(hào)處理提取出待識(shí)別目標(biāo)的特征,利用已有的特征模板對(duì)提取的特征進(jìn)行分類,對(duì)照隸屬度對(duì)目標(biāo)進(jìn)行識(shí)別。傳統(tǒng)目標(biāo)識(shí)別存在的主要問題是按照預(yù)先設(shè)定的識(shí)別模式工作,不具備隨目標(biāo)和環(huán)境變化而自動(dòng)改變識(shí)別模式的能力,當(dāng)環(huán)境發(fā)生變化時(shí),僅僅依靠被動(dòng)的特征提取、分類已難以獲得理想的效果,對(duì)目標(biāo)和環(huán)境的適應(yīng)能力不足。面對(duì)日益復(fù)雜的戰(zhàn)場環(huán)境及密集雜波、多目標(biāo)背景等挑戰(zhàn),為滿足當(dāng)前特別是未來作戰(zhàn)需求,識(shí)別技術(shù)必須進(jìn)一步創(chuàng)新發(fā)展以不斷提升識(shí)別模式、識(shí)別性能,才能適應(yīng)日益復(fù)雜的作戰(zhàn)環(huán)境。

深度學(xué)習(xí)識(shí)別對(duì)大樣本需求限制了在實(shí)時(shí)對(duì)抗中的應(yīng)用

傳統(tǒng)雷達(dá)目標(biāo)識(shí)別難點(diǎn)主要集中在對(duì)待識(shí)別目標(biāo)的差異性規(guī)律、識(shí)別機(jī)理等基礎(chǔ)問題掌握不全面,解決識(shí)別問題的前提是目標(biāo)特性的深入分析,是一個(gè)長期的研究過程。但武器系統(tǒng)智能化發(fā)展速度迅猛,武器裝備的智能作戰(zhàn)能力提升對(duì)雷達(dá)識(shí)別技術(shù)提出了更高的要求,不可能等目標(biāo)特性機(jī)理完全清楚了,再去研究雷達(dá)識(shí)別技術(shù)。

傳統(tǒng)雷達(dá)識(shí)別

隨著人工智能技術(shù)的迅速發(fā)展,基于深度學(xué)習(xí)、遷移學(xué)習(xí)等人工智能在軍事領(lǐng)域應(yīng)用技術(shù)也受到國內(nèi)外廣泛關(guān)注,許多專家、學(xué)者均提出了采用智能識(shí)別技術(shù)進(jìn)行目標(biāo)和環(huán)境特征提取和模式識(shí)別等任務(wù),實(shí)現(xiàn)對(duì)雷達(dá)對(duì)非合作目標(biāo)的有效識(shí)別。美國國防部國防創(chuàng)新試驗(yàn)小組也明確指出AI關(guān)注重點(diǎn):能夠?yàn)閷?shí)時(shí)對(duì)抗服務(wù)的人工智能和機(jī)器學(xué)習(xí)。

目前,基于深度學(xué)習(xí)方法對(duì)不同形式雷達(dá)數(shù)據(jù)進(jìn)行處理,經(jīng)過調(diào)研發(fā)現(xiàn),針對(duì)不同雷達(dá)成像原理集信號(hào)處理方法,可以得到不同形式的雷達(dá)數(shù)據(jù)。如合成孔徑雷達(dá)圖像、高分辨距離像、微多普勒圖譜以及距離多普勒圖譜等。主流的研究思路主要基于生成各種不同雷達(dá)圖像,利用深度學(xué)習(xí)網(wǎng)絡(luò)對(duì)圖像進(jìn)行處理。

利用深度學(xué)習(xí)網(wǎng)絡(luò)對(duì)雷達(dá)數(shù)據(jù)處理的思路主要是在宏觀角度的闡述,深度學(xué)習(xí)與常規(guī)雷達(dá)識(shí)別技術(shù)最主要差異在于采用特征的不同,技術(shù)途徑也因特征提取的方法不同而具有一定的差異。

常規(guī)雷達(dá)識(shí)別區(qū)別于深度學(xué)習(xí),最主要的差異在于采用的特征不同。常規(guī)雷達(dá)識(shí)別借助專業(yè)技術(shù)人員的經(jīng)驗(yàn)進(jìn)行特征提取,采用窄帶統(tǒng)計(jì)特征、寬帶散射中心、微動(dòng)等反映了目標(biāo)散射機(jī)理的特征,具有一定的物理含義,稱為物理特征。物理特征主要通過專業(yè)人員對(duì)數(shù)據(jù)的深入分析后進(jìn)行特征提取,從而建立識(shí)別特征庫,但在有限樣本情況下對(duì)復(fù)雜函數(shù)的表示能力有限,針對(duì)復(fù)雜問題泛化能力受到一定的限制。

基于CNN的深度算法

而深度學(xué)習(xí)的實(shí)質(zhì),是通過構(gòu)建具有很多隱層的機(jī)器學(xué)習(xí)模型和海量的訓(xùn)練數(shù)據(jù),來學(xué)習(xí)更有用的特征,從而最終提升分類或預(yù)測的準(zhǔn)確性。通過計(jì)算機(jī)自動(dòng)的逐層特征變換,可以學(xué)習(xí)到輸入數(shù)據(jù)的內(nèi)在特征,使得分類識(shí)別更加容易,同時(shí)模型結(jié)構(gòu)的深度化也使得對(duì)復(fù)雜函數(shù)的特征表示能力更。深度學(xué)習(xí)識(shí)別最主要的特點(diǎn)是自動(dòng)提取特征,減少了技術(shù)人員對(duì)專業(yè)知識(shí)的依賴程度。

深度學(xué)習(xí)識(shí)別最大的缺點(diǎn)是需要大量的訓(xùn)練數(shù)據(jù),充分利用訓(xùn)練數(shù)據(jù)的信息,才能形成分類約束條件,而目前限制人工智能在軍事領(lǐng)域應(yīng)用的關(guān)鍵問題就在于:短時(shí)間、強(qiáng)對(duì)抗的交戰(zhàn)環(huán)境能夠提供的機(jī)器學(xué)習(xí)樣本數(shù)量太少,導(dǎo)致人工智能難以在對(duì)抗環(huán)境中施展;并且深度學(xué)習(xí)獲得的隱層特征物理含義不明確,武器系統(tǒng)出現(xiàn)問題后難以定位。因此直接在武器裝備中采用深度學(xué)習(xí)等人工智能識(shí)別技術(shù)與裝備特點(diǎn)不相適應(yīng),需要進(jìn)一步挖掘新的人工智能途徑,研究人工智能在武器裝備應(yīng)用的模式。

基于反饋機(jī)制認(rèn)知識(shí)別應(yīng)用的初步框架

認(rèn)知學(xué)識(shí)別在實(shí)時(shí)對(duì)抗復(fù)雜環(huán)境下或大有可為

“認(rèn)知學(xué)識(shí)別”的定義和本質(zhì)仍是科學(xué)界正在努力探索研究尚未完全解決的問題,當(dāng)前國內(nèi)外還沒有關(guān)于“認(rèn)知學(xué)識(shí)別”的明確定義。從工程技術(shù)角度看,可以狹義地將認(rèn)知識(shí)別理解為深度強(qiáng)化學(xué)習(xí),是帶真正推理、反饋能力的強(qiáng)人工智能。通過對(duì)歷史和當(dāng)前環(huán)境的檢測和分析,對(duì)目標(biāo)學(xué)習(xí)和推理,利用相應(yīng)結(jié)果自適應(yīng)調(diào)整識(shí)別系統(tǒng)的各項(xiàng)參數(shù),在對(duì)目標(biāo)有效、可靠且穩(wěn)健的感知的基礎(chǔ)上,快速完成認(rèn)知、反饋、調(diào)整策略、進(jìn)行決策,并在時(shí)間、空間、頻率和極化等多個(gè)維度實(shí)現(xiàn)復(fù)雜干擾條件下的智能化博弈,從而大幅度提高系統(tǒng)的識(shí)別性能。針對(duì)目前人工智能在裝備應(yīng)用中存在的問題,主要分為兩個(gè)方面:一、深度學(xué)習(xí)網(wǎng)絡(luò)隱層參數(shù)物理解釋問題;二、帶有反饋機(jī)制的強(qiáng)人工智能網(wǎng)絡(luò)的建立。

深度學(xué)習(xí)識(shí)別最大的缺點(diǎn)是需要大量的訓(xùn)練數(shù)據(jù)

為了解決深度學(xué)習(xí)獲得的隱層特征物理含義不明確問題,需要對(duì)深度學(xué)習(xí)網(wǎng)絡(luò)隱層參數(shù)物理含義進(jìn)行解析,并通過對(duì)目標(biāo)微動(dòng)特性的研究,建立微動(dòng)參數(shù)與深度學(xué)習(xí)網(wǎng)絡(luò)之間的關(guān)聯(lián)關(guān)系。通過對(duì)進(jìn)動(dòng)目標(biāo)的雷達(dá)回波測試數(shù)據(jù)的寬窄帶數(shù)據(jù)進(jìn)行空間變換,得到不同變換空間下的微動(dòng)特征并建立目標(biāo)進(jìn)動(dòng)特征庫。基于進(jìn)動(dòng)特征庫數(shù)據(jù)對(duì)深度學(xué)習(xí)網(wǎng)絡(luò)進(jìn)行訓(xùn)練,根據(jù)得到的訓(xùn)練結(jié)果與目標(biāo)進(jìn)動(dòng)參數(shù)建立關(guān)聯(lián)關(guān)系,最終通過這種關(guān)聯(lián)關(guān)系對(duì)網(wǎng)絡(luò)隱層參數(shù)進(jìn)行物理解釋。

以上闡述了目前智能識(shí)別技術(shù)能夠達(dá)到的效果,對(duì)于帶真正推理、反饋能力的強(qiáng)人工智能的實(shí)現(xiàn)還需要對(duì)識(shí)別流程框架進(jìn)一步優(yōu)化。為構(gòu)建基于反饋機(jī)制認(rèn)知技術(shù)在雷達(dá)識(shí)別應(yīng)用中的初步框架,應(yīng)充分利用目標(biāo)飛行階段、關(guān)鍵事件等時(shí)間軸上的先驗(yàn)信息和知識(shí),在雷達(dá)實(shí)際跟蹤目標(biāo)的過程中,對(duì)飛行階段、關(guān)鍵事件進(jìn)行判斷,將判斷結(jié)果實(shí)時(shí)反饋到知識(shí)庫中,結(jié)合時(shí)間軸上的先驗(yàn)信息和知識(shí),通過反饋機(jī)制對(duì)知識(shí)庫進(jìn)行實(shí)時(shí)更新,從而更精準(zhǔn)地識(shí)別出目標(biāo)。

深度學(xué)習(xí)網(wǎng)絡(luò)隱層參數(shù)物理含義解析

針對(duì)目前在雷達(dá)識(shí)別應(yīng)用領(lǐng)域中的難點(diǎn)技術(shù),尤其是非合作外軍目標(biāo)由于先驗(yàn)知識(shí)的匱乏、訓(xùn)練樣本少等問題,建議采用強(qiáng)人工智能的認(rèn)知學(xué)識(shí)別方法,深入挖掘其對(duì)電磁環(huán)境的認(rèn)知、推理能力,通過多傳感器資源、信息的共享、協(xié)作、推理以及算法反饋機(jī)制,形成人工智能在武器裝備應(yīng)用的一種新模式,以達(dá)到非合作目標(biāo)智能識(shí)別的目的。

審核編輯黃宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • 雷達(dá)
    +關(guān)注

    關(guān)注

    50

    文章

    3117

    瀏覽量

    120013
  • 人工智能
    +關(guān)注

    關(guān)注

    1806

    文章

    48987

    瀏覽量

    249040
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5560

    瀏覽量

    122762
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    CES Asia 2025聚焦低空智能感知與空域管理,論壇開啟行業(yè)新征程

    、UTM/UAM管理系統(tǒng)發(fā)展與互操作性、人工智能在空域動(dòng)態(tài)管理的應(yīng)用等關(guān)鍵議題,旨在匯聚全球智慧,為低空經(jīng)濟(jì)發(fā)展注入新動(dòng)力。 低空通信導(dǎo)航監(jiān)視技術(shù)是低空飛行的基石。隨著5G、衛(wèi)星通信
    發(fā)表于 07-10 09:57

    人工智能在未來戰(zhàn)爭占主導(dǎo)地位?

    ? ? ? 人工智能在未來戰(zhàn)爭占主導(dǎo)地位,這一議題在當(dāng)前軍事理論和戰(zhàn)略研究愈發(fā)凸顯其重要性。隨著科技的飛速發(fā)展人工智能不僅改變了我們的
    的頭像 發(fā)表于 01-22 08:05 ?567次閱讀

    嵌入式和人工智能究竟是什么關(guān)系?

    人工智能的結(jié)合,無疑是科技發(fā)展中的一場革命。在人工智能硬件加速,嵌入式系統(tǒng)以其獨(dú)特的優(yōu)勢和重要性,發(fā)揮著不可或缺的作用。通過深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)等算法,嵌入式系統(tǒng)能夠高效地處理大量數(shù)
    發(fā)表于 11-14 16:39

    RISC-V在AI領(lǐng)域的發(fā)展前景怎么樣?

    隨著人工智能的不斷發(fā)展,現(xiàn)在的視覺機(jī)器人,無人駕駛等智能產(chǎn)品的不斷更新迭代,發(fā)現(xiàn)ARM占用很大的市場份額,推出的ARM Cortex M85性能也是杠杠的,不知道RISC-V在AI領(lǐng)域有哪些參考方案?
    發(fā)表于 10-25 19:13

    人工智能在智慧城市建設(shè)的應(yīng)用

    人工智能(AI)在智慧城市建設(shè)的應(yīng)用廣泛而深入,以下是對(duì)其主要應(yīng)用的介紹: 一、交通管理與優(yōu)化 交通流量監(jiān)測與優(yōu)化 人工智能通過實(shí)時(shí)監(jiān)測交通流量,優(yōu)化信號(hào)燈配時(shí),有效減少交通擁堵現(xiàn)象
    的頭像 發(fā)表于 10-24 16:15 ?2326次閱讀

    醫(yī)療機(jī)器人的發(fā)展前景

     醫(yī)療機(jī)器人的發(fā)展前景十分廣闊,主要基于技術(shù)進(jìn)步、市場需求增長以及政策支持的共同作用。以下是對(duì)醫(yī)療機(jī)器人發(fā)展前景的詳細(xì)分析:   一、技術(shù)進(jìn)步推動(dòng)行業(yè)發(fā)展   技術(shù)創(chuàng)新:隨著人工智
    的頭像 發(fā)表于 10-21 15:21 ?3046次閱讀

    《AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第6章人AI與能源科學(xué)讀后感

    、優(yōu)化等方面的應(yīng)用有了更清晰的認(rèn)識(shí)。特別是書中提到的基于大數(shù)據(jù)和機(jī)器學(xué)習(xí)的能源管理系統(tǒng),通過實(shí)時(shí)監(jiān)測和分析能源數(shù)據(jù),實(shí)現(xiàn)了能源的高效利用和智能化管理。 其次,第6章通過多個(gè)案例展示了人工智能在能源科學(xué)
    發(fā)表于 10-14 09:27

    AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第4章-AI與生命科學(xué)讀后感

    農(nóng)業(yè)、環(huán)保等,為人類社會(huì)的可持續(xù)發(fā)展做出貢獻(xiàn)。 總結(jié) 《AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第4章關(guān)于AI與生命科學(xué)的部分,為我們展示了一個(gè)充滿希望和機(jī)遇的未來。在這個(gè)未來
    發(fā)表于 10-14 09:21

    《AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第一章人工智能驅(qū)動(dòng)的科學(xué)創(chuàng)新學(xué)習(xí)心得

    深刻認(rèn)識(shí)到人工智能在推動(dòng)科學(xué)進(jìn)步的核心價(jià)值。它不僅是科技進(jìn)步的加速器,更是人類智慧拓展的催化劑,引領(lǐng)我們邁向一個(gè)更加智慧、高效、可持續(xù)的科學(xué)研究新時(shí)代。
    發(fā)表于 10-14 09:12

    risc-v在人工智能圖像處理應(yīng)用前景分析

    RISC-V和Arm內(nèi)核及其定制的機(jī)器學(xué)習(xí)和浮點(diǎn)運(yùn)算單元,用于處理復(fù)雜的人工智能圖像處理任務(wù)。 四、未來發(fā)展趨勢 隨著人工智能技術(shù)的不斷發(fā)展和普及,RISC-V在
    發(fā)表于 09-28 11:00

    生成式人工智能在教育的應(yīng)用

    生成式人工智能在教育的應(yīng)用日益廣泛,為教育領(lǐng)域帶來了諸多變革和創(chuàng)新。以下是對(duì)生成式人工智能在教育的幾個(gè)主要應(yīng)用方面的詳細(xì)闡述:
    的頭像 發(fā)表于 09-16 16:07 ?2812次閱讀

    名單公布!【書籍評(píng)測活動(dòng)NO.44】AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新

    材料基因組工程的推動(dòng)下,人工智能如何與材料科學(xué)結(jié)合,加快傳統(tǒng)材料和新型材料的開發(fā)過程。 第4章介紹了人工智能在加快藥物研發(fā)、輔助基因研究方面及在合成生物學(xué)的普遍應(yīng)用。 第5章介紹了人工智能
    發(fā)表于 09-09 13:54

    FPGA在人工智能的應(yīng)用有哪些?

    定制化的硬件設(shè)計(jì),提高了硬件的靈活性和適應(yīng)性。 綜上所述,F(xiàn)PGA在人工智能領(lǐng)域的應(yīng)用前景廣闊,不僅可以用于深度學(xué)習(xí)的加速和云計(jì)算的加速,還可以針對(duì)特定應(yīng)用場景進(jìn)行定制化計(jì)算,為人工智能技術(shù)的
    發(fā)表于 07-29 17:05

    國產(chǎn)FPGA的發(fā)展前景是什么?

    國產(chǎn)FPGA的發(fā)展前景是積極且充滿機(jī)遇的,主要體現(xiàn)在以下幾個(gè)方面: 一、市場需求增長 技術(shù)驅(qū)動(dòng):隨著5G、物聯(lián)網(wǎng)、人工智能、大數(shù)據(jù)等技術(shù)的快速發(fā)展,對(duì)FPGA的性能和靈活性提出了更高要求,為國產(chǎn)
    發(fā)表于 07-29 17:04

    人工智能在軍事方面的應(yīng)用

    智慧華盛恒輝人工智能在軍事方面的應(yīng)用廣泛且深入,主要包括以下幾個(gè)方面: 智慧華盛恒輝一、作戰(zhàn)效能提升 自動(dòng)目標(biāo)識(shí)別與跟蹤: 人工智能系統(tǒng)能夠在復(fù)雜環(huán)境準(zhǔn)確識(shí)別和跟蹤目標(biāo),提高作戰(zhàn)效率。利用圖像識(shí)別
    的頭像 發(fā)表于 07-16 09:52 ?1189次閱讀
    主站蜘蛛池模板: 久久久精品免费热线观看 | 中文字幕第11页 | 男人的天堂网在线 | 成 人色 网 站 欧美大片在线观看 | 在线播放免费人成毛片乱码 | 青青青青久久精品国产h | 五月婷婷丁香久久 | 999久久久国产精品 999久久久免费精品国产牛牛 | 精品三级在线观看 | 77se77亚洲欧美在线大屁股 | 日韩成人毛片高清视频免费看 | 狠狠色噜噜狠狠狠狠999米奇 | 青草视频在线观看国产 | 视频在线h | 亚洲一区日本 | 视频免费观看视频 | 亚洲综合区图片小说区 | 四虎影院新网址 | 禁h粗大太大好爽好涨受不了了 | 99久久免费精品视频 | 国内真实下药迷j在线观看 国内自拍 亚洲系列 欧美系列 | 99热这里只有精品一区二区三区 | 天天色综合天天 | 色综合天天综合网国产国产人 | 天堂网2021天堂手机版丶 | 男女交性高清视频无遮挡 | 国产成人精品午夜二三区 | 色网综合| 一级做α爰片久久毛片 | 国外一级毛片 | 六月婷婷网视频在线观看 | 欧美成人伊人久久综合网 | bt天堂新版中文在线地址 | 久久免费视频99 | 91大神在线观看精品一区 | 午夜剧场黄色 | 在线免费亚洲 | 天天色天天色 | 天天综合五月天 | 夜夜夜爽 | 1024 在线观看视频免费 |