隨著新基建概念的提出,5G 和數(shù)據(jù)中心的建設(shè)在 2020 年進(jìn)入快車(chē)道,海量的光模塊需求引領(lǐng)著行業(yè)的更新?lián)Q代,對(duì)光器件提出了更高的要求。在光通信測(cè)試領(lǐng)域,也將迎來(lái)很多挑戰(zhàn)。
共同面對(duì)未來(lái)挑戰(zhàn),泰克將推出一系列關(guān)于光通信測(cè)試的技術(shù)文章,本篇為第一講,為您講解關(guān)于無(wú)源器件的 PD 暗電流測(cè)試問(wèn)題。本文作者是來(lái)自泰克代理商“柯泰測(cè)試”的一位工程師朋友段工,他偶然聽(tīng)見(jiàn)幾個(gè)搞光電的小伙伴在掰扯 PD 暗電流以及如何測(cè)試的問(wèn)題,正好想分享一些這方面的經(jīng)驗(yàn)和理解。
暗電流,維基百科的解釋是:當(dāng)沒(méi)有光子通過(guò)光感測(cè)器(例如光電倍增管、光電二極管及感光耦合元件)時(shí),元件上仍然會(huì)產(chǎn)生的微小電流。在非光學(xué)元件中稱(chēng)為逆向偏壓時(shí)的漏電流,在所有二極管中都存在。暗電流形成的原因是元件中耗盡層中電子以及空穴隨機(jī)產(chǎn)生所造成的。
這個(gè)解釋有幾個(gè)重點(diǎn):1) 無(wú)光環(huán)境、反向偏壓、漏電流;2)任何二極管都存在暗電流;3)暗電流屬于元件的熱噪聲,隨機(jī)產(chǎn)生、無(wú)法消除。通俗一點(diǎn):首先,這個(gè)電流并非來(lái)自外界的光子產(chǎn)生的,而是來(lái)自元件內(nèi)部的熱噪聲;其次,任何二極管都有一個(gè)理論特性即正向?qū)ā⒎聪蚪刂梗F(xiàn)實(shí)中的二極管元件,反向不可能做到真正的截止(反向飽和電流為 0),最后暗電流是沒(méi)辦法完全消除,只能通過(guò) TEC 或者液氮降溫的方式來(lái)減小。
一般來(lái)說(shuō)暗電流都很小,基本都在 uA 和 nA 量級(jí),而在工業(yè)領(lǐng)域,暗電流測(cè)試屬于必測(cè)項(xiàng),該測(cè)試指標(biāo)主要是用來(lái)判斷二極管元件是否擊穿以及晶圓工藝是否存在問(wèn)題。那這么小的暗電流,我們?cè)撊绾螠?zhǔn)確、可靠的測(cè)量呢?有人說(shuō)用一般的萬(wàn)用表或者安培表就可以了,真的可以嗎?
乘風(fēng)破浪的姐姐們都很拼很努力,一幀一幀地?fù)讣?xì)節(jié),再累再苦再折磨也要堅(jiān)持練到完美。工程師的日常更是挑戰(zhàn)不斷,任何細(xì)節(jié) bug 都成為前進(jìn)的絆腳石。其實(shí)小電流的測(cè)試并沒(méi)有說(shuō)的那么簡(jiǎn)單,還是需要克服很多難點(diǎn),這里簡(jiǎn)單列舉最主要的幾個(gè)難點(diǎn)。
難點(diǎn) 1:如何克服電流表帶來(lái)的輸入端壓降?
萬(wàn)用表測(cè)量 mA 以上的電流時(shí),電流表的內(nèi)阻基本可以忽略不計(jì),但小電流的量級(jí)基本都在 uA 甚至 nA 級(jí)別,此時(shí)電流表的內(nèi)阻就不能忽略不計(jì)了,而電流表內(nèi)阻會(huì)帶來(lái)壓降,這個(gè)壓降就稱(chēng)之為“輸入端壓降(voltage burden)”,這個(gè)指標(biāo)的大小直接會(huì)影響電流的測(cè)量精度:
舉個(gè)例子:假設(shè) Vs=0.7V、Is=100uA、Ifs=200uA、Rs=10KΩ、然后輸入端壓降為 200mV:
那計(jì)算出來(lái) IM=(0.7V-0.2V(100uA/200uA))/10KΩ= 60uA
而理想情況下 IM=0.7/10KΩ=70uA,則測(cè)試誤差=14%;
如果把輸入端壓降減小到 200uV, 那整個(gè)測(cè)試 IM=69.99uA 則測(cè)試誤差=0.01%;
結(jié)論:通過(guò)上面一個(gè)簡(jiǎn)單的例子就可以說(shuō)明,電流表的輸入端壓降會(huì)直接影響電流表的測(cè)量精度,輸入端壓降越大,電流的測(cè)量誤差就越大,而輸入端壓降越小,測(cè)量誤差就越小。
難點(diǎn) 2:如何在測(cè)量電流時(shí)添加一個(gè)合適的反向偏壓?
常用的萬(wàn)用表都只能解決測(cè)量的問(wèn)題,但目前很多暗電流的測(cè)試都需要提供一個(gè)反向偏壓(Bias Voltage),為什么要加偏壓?一方面偏壓可以加速電子和空穴的遷移過(guò)程,減少電子和空穴的復(fù)合率,從而提高量子效率和響應(yīng)時(shí)間;但是反向電壓也不能無(wú)限制的增加,過(guò)大的偏壓有可能會(huì)導(dǎo)致二極管的反向擊穿等;另一方面,很多二極管屬于雪崩二極管如 APD,它們本身需要一定的偏壓才能達(dá)到工作條件,形成雪崩效應(yīng),縱觀目前的電流表和萬(wàn)用表,都不具備提供偏壓的功能,因此必須在電流表的回路中加入電壓源,這樣會(huì)使測(cè)試系統(tǒng)變得復(fù)雜,引入更多干擾條件,導(dǎo)致整個(gè)暗電流的測(cè)試精度無(wú)法保證。
那相關(guān)行業(yè)(如 LED/PD 行業(yè))在暗電流(帶偏壓)測(cè)試上都采用什么設(shè)備來(lái)進(jìn)行測(cè)試呢?通過(guò)對(duì)幾個(gè)行業(yè)的調(diào)研和走訪,發(fā)現(xiàn)目前暗電流測(cè)試主要有兩種選擇:
(1)SMU 源測(cè)單元。一方面利用它的電壓源功能,可以完成反向偏壓的掃描,另一方面同時(shí)利用它的測(cè)量功能,完成小電流的測(cè)試,這個(gè)方案的優(yōu)點(diǎn)是電壓掃描范圍大,最高可到幾百伏,而電流的測(cè)量功能也能基本滿足 nA 級(jí)別的測(cè)試要求,缺點(diǎn)則是 SMU 的單價(jià)比較高,相對(duì)而言性?xún)r(jià)比就沒(méi)那么高了。
Keithley SMU 2600
(2)高精度的 DMM 或者皮安表。這兩個(gè)產(chǎn)品都屬于測(cè)量設(shè)備,可以用于暗電流測(cè)試,電流的測(cè)試精度甚至可以達(dá)到 pA 級(jí)別,產(chǎn)品的優(yōu)點(diǎn)是價(jià)格適中,測(cè)量精度較高;但這兩個(gè)產(chǎn)品的缺點(diǎn)是:1)無(wú)法提供偏壓,只能完成無(wú)偏壓環(huán)境下的暗電流測(cè)試;2)高精度萬(wàn)用表的輸入端壓降比較高,會(huì)影響小電流的測(cè)試精度。
Keithley DMM 7510
目前 5G 大基建如火如荼,光通信行業(yè)呈現(xiàn)爆發(fā)式增長(zhǎng),帶寬和速度越來(lái)越快,不管是無(wú)源的光網(wǎng)絡(luò)如 FTTx、光纖光纜,還是有源的光收發(fā)模塊、光芯片等等都對(duì) PD 端的靈敏度提出了越來(lái)越高的要求,那么,靈敏度的提升必然對(duì)暗電流的要求也越來(lái)越苛刻,通過(guò)查閱很多規(guī)格書(shū),相當(dāng)一部分的暗電流測(cè)試的要求都明確要求暗電流≤1nA,有的甚至要求≤幾百 pA,同時(shí)偏壓要求在 5-15V 之間,有的電壓要求≥100V, 這對(duì)于 DMM 和皮安表來(lái)說(shuō)基本無(wú)能為力。
Keithley 6485
那到底有沒(méi)有一款既可以提供偏壓掃描,又能進(jìn)行小電流測(cè)試的儀表呢?答案是有的,比如吉時(shí)利的 6487 就可以實(shí)現(xiàn)。我們先看下這個(gè)帶偏壓皮安表的幾個(gè)重要指標(biāo):
10 fA resolution
<200uV burden voltage
支持電壓掃描和 Analog output
掃描電壓范圍 0-505V;
對(duì)于 1、2 和 4 三項(xiàng)指標(biāo)而言,完全滿足了文章前面提到的暗電流測(cè)試的要求,而且電壓源支持同步掃描并>100V,同時(shí)帶模擬輸出功能,不僅能描繪 I-V 曲線、測(cè)試高阻器件,還可以應(yīng)用到 fiber alignment 以及 PD on-wafer 測(cè)試等光電典型應(yīng)用中。
PD On-Wafer Testing
High Resistance Testing
如果你正好要對(duì)二極管或者 PD 做暗電流的測(cè)試和評(píng)估,或者你在做光纖耦合或者 PD on-wafer 測(cè)試等相關(guān)的行業(yè)應(yīng)用,推薦了解一下 Keithley 的 6487 或者 6482/2502(雙通道)的帶偏壓皮安表。
審核編輯 黃昊宇
-
PD
+關(guān)注
關(guān)注
4文章
486瀏覽量
44158 -
暗電流
+關(guān)注
關(guān)注
0文章
28瀏覽量
10133
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
科學(xué)相機(jī)暗電流介紹
![科學(xué)相機(jī)<b class='flag-5'>暗電流</b>介紹](https://file1.elecfans.com//web3/M00/00/0E/wKgZPGdGSo-AKbwJAAHm4dsT7_M015.jpg)
ADS7953 PD模式下電流為什么還會(huì)隨著采樣率的增加而增加呢?
TPS6598x USB PD電源協(xié)商和多端口拉電流/灌電流行為應(yīng)用手冊(cè)
![TPS6598x USB <b class='flag-5'>PD</b>電源協(xié)商和多端口拉<b class='flag-5'>電流</b>/灌<b class='flag-5'>電流</b>行為應(yīng)用手冊(cè)](https://file.elecfans.com/web1/M00/D9/4E/pIYBAF_1ac2Ac0EEAABDkS1IP1s689.png)
LMP7721做了一個(gè)光電流檢測(cè)測(cè)試電路,TP1的電壓為什么這么高?
設(shè)計(jì)一個(gè)光電二極管(PD)電流放大電路,PD輸出電流想要放大20倍,求推薦合適的放大芯片?
OPA855用于TIA電路時(shí),當(dāng)輸入電流為0,OPA855存在70mV左右的輸出,為什么?
多通道微小電流測(cè)試
![多通道微小<b class='flag-5'>電流</b><b class='flag-5'>測(cè)試</b>](https://file1.elecfans.com//web2/M00/FA/99/wKgZomaN5BOAC-vTAAFiaiXUkQ0925.png)
光電倍增管產(chǎn)生暗電流的原因有哪些 光電倍增管的暗電流有什么用?
pd取電協(xié)議芯片LDR6500
![<b class='flag-5'>pd</b>取電協(xié)議芯片LDR6500](https://file1.elecfans.com/web2/M00/E6/67/wKgZomZG__mAMCF-AABbqqBGqnU466.png)
芯海科技旗下PD產(chǎn)品CS32G020通過(guò)USB-IF官方的PD EPR測(cè)試認(rèn)證
![芯海科技旗下<b class='flag-5'>PD</b>產(chǎn)品CS32G020通過(guò)USB-IF官方的<b class='flag-5'>PD</b> EPR<b class='flag-5'>測(cè)試</b>認(rèn)證](https://file1.elecfans.com/web2/M00/C7/ED/wKgZomYXgJyAUYgyAAAVYrEB1Xg247.jpg)
USB TypeC PD快充協(xié)議智能觸發(fā)芯片F(xiàn)S312中文資料
沖擊電流測(cè)試的測(cè)試步驟是什么
![沖擊<b class='flag-5'>電流</b><b class='flag-5'>測(cè)試</b>的<b class='flag-5'>測(cè)試</b>步驟是什么](https://file1.elecfans.com/web2/M00/C3/B5/wKgaomXn1NCAMtMPAAX1iStYNb4487.png)
如何用數(shù)字源表簡(jiǎn)化apd管的暗電流測(cè)試?
![如何用數(shù)字源表簡(jiǎn)化apd管的<b class='flag-5'>暗電流</b><b class='flag-5'>測(cè)試</b>?](https://file1.elecfans.com//web2/M00/C5/67/wKgaomXz5faAawQ3AAD5fhKjB6o322.png)
![](https://file1.elecfans.com/web2/M00/C0/03/wKgZomXQx1mAZoi2AAN55SXQFMc238.jpg)
評(píng)論