91在线观看视频-91在线观看视频-91在线观看免费视频-91在线观看免费-欧美第二页-欧美第1页

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

計算機視覺CV領域圖像分類方向文獻和代碼的超全總結和列表!

新機器視覺 ? 來源:新機器視覺 ? 作者:新機器視覺 ? 2020-11-03 10:08 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

今天給大家介紹自 2014 年以來,計算機視覺 CV 領域圖像分類方向文獻和代碼的超全總結和列表!總共涉及 36 種 ConvNet 模型。該 GitHub 項目作者是 weiaicunzai,項目地址是:

https://github.com/weiaicunzai/awesome-image-classification

背景

我相信圖像識別是深入到其它機器視覺領域一個很好的起點,特別是對于剛剛入門深度學習的人來說。當我初學 CV 時,犯了很多錯。我當時非常希望有人能告訴我應該從哪一篇論文開始讀起。到目前為止,似乎還沒有一個像 deep-learning-object-detection 這樣的 GitHub 項目。因此,我決定建立一個 GitHub 項目,列出深入學習中關于圖像分類的論文和代碼,以幫助其他人。

對于學習路線,我的個人建議是,對于那些剛入門深度學習的人,可以試著從 vgg 開始,然后是 googlenet、resnet,之后可以自由地繼續閱讀列出的其它論文或切換到其它領域。

性能表

基于簡化的目的,我只從論文中列舉出在 ImageNet 上準確率最高的 top1 和 top5。注意,這并不一定意味著準確率越高,一個網絡就比另一個網絡更好。因為有些網絡專注于降低模型復雜性而不是提高準確性,或者有些論文只給出 ImageNet 上的 single crop results,而另一些則給出模型融合或 multicrop results。

關于性能表的標注:

ConvNet:卷積神經網絡的名稱

ImageNet top1 acc:論文中基于 ImageNet 數據集最好的 top1 準確率

ImageNet top5 acc:論文中基于 ImageNet 數據集最好的 top5 準確率

Published In:論文發表在哪個會議或期刊

論文&代碼

1. VGG

Very Deep Convolutional Networks for Large-Scale Image Recognition.

Karen Simonyan, Andrew Zisserman

pdf: https://arxiv.org/abs/1409.1556

code: torchvision :

https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py

code: keras-applications :

https://github.com/keras-team/keras-applications/blob/master/keras_applications/vgg16.py

code: keras-applications :

https://github.com/keras-team/keras-applications/blob/master/keras_applications/vgg19.py

2. GoogleNet

Going Deeper with Convolutions

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich

pdf:https://arxiv.org/abs/1409.4842

code: unofficial-tensorflow :

https://github.com/conan7882/GoogLeNet-Inception

code: unofficial-caffe :

https://github.com/lim0606/caffe-googlenet-bn

3.PReLU-nets

Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun

pdf:https://arxiv.org/abs/1502.01852

code: unofficial-chainer :

https://github.com/nutszebra/prelu_net

4.ResNet

Deep Residual Learning for Image Recognition

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun

pdf:https://arxiv.org/abs/1512.03385

code: facebook-torch :

https://github.com/facebook/fb.resnet.torch

code: torchvision :

https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py

code: keras-applications :

https://github.com/keras-team/keras-applications/blob/master/keras_applications/resnet.py

code: unofficial-keras :

https://github.com/raghakot/keras-resnet

code: unofficial-tensorflow :

https://github.com/ry/tensorflow-resnet

5.PreActResNet

Identity Mappings in Deep Residual Networks

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun

pdf:https://arxiv.org/abs/1603.05027

code: facebook-torch :

https://github.com/facebook/fb.resnet.torch/blob/master/models/preresnet.lua

code: official :

https://github.com/KaimingHe/resnet-1k-layers

code: unoffical-pytorch :

https://github.com/kuangliu/pytorch-cifar/blob/master/models/preact_resnet.py

code: unoffical-mxnet :

https://github.com/tornadomeet/ResNet

6.Inceptionv3

Rethinking the Inception Architecture for Computer Vision

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, Zbigniew Wojna

pdf:https://arxiv.org/abs/1512.00567

code: torchvision :

https://github.com/pytorch/vision/blob/master/torchvision/models/inception.py

code: keras-applications :

https://github.com/keras-team/keras-applications/blob/master/keras_applications/inception_v3.py

7.Inceptionv4 && Inception-ResNetv2

Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning

Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi

pdf:https://arxiv.org/abs/1602.07261

code: unofficial-keras :

https://github.com/kentsommer/keras-inceptionV4

code: unofficial-keras :

https://github.com/titu1994/Inception-v4

code: unofficial-keras :

https://github.com/yuyang-huang/keras-inception-resnet-v2

8. RIR

Resnet in Resnet: Generalizing Residual Architectures

Sasha Targ, Diogo Almeida, Kevin Lyman

pdf:https://arxiv.org/abs/1603.08029

code: unofficial-tensorflow :

https://github.com/SunnerLi/RiR-Tensorflow

code: unofficial-chainer :

https://github.com/nutszebra/resnet_in_resnet

9.Stochastic Depth ResNet

Deep Networks with Stochastic Depth

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, Kilian Weinberger

pdf:https://arxiv.org/abs/1603.09382

code: unofficial-torch :

https://github.com/yueatsprograms/Stochastic_Depth

code: unofficial-chainer :

https://github.com/yasunorikudo/chainer-ResDrop

code: unofficial-keras :

https://github.com/dblN/stochastic_depth_keras

10.WRN

Wide Residual Networks

Sergey Zagoruyko, Nikos Komodakis

pdf:https://arxiv.org/abs/1605.07146

code: official :

https://github.com/szagoruyko/wide-residual-networks

code: unofficial-pytorch :

https://github.com/xternalz/WideResNet-pytorch

code: unofficial-keras :

https://github.com/asmith26/wide_resnets_keras

code: unofficial-pytorch :

https://github.com/meliketoy/wide-resnet.pytorch

11.squeezenet

SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size?

Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, Kurt Keutzer

pdf:https://arxiv.org/abs/1602.07360

code: torchvision :

https://github.com/pytorch/vision/blob/master/torchvision/models/squeezenet.py

code: unofficial-caffe :

https://github.com/DeepScale/SqueezeNet

code: unofficial-keras :

https://github.com/rcmalli/keras-squeezenet

code: unofficial-caffe :

https://github.com/songhan/SqueezeNet-Residual

12.GeNet

Genetic CNN

Lingxi Xie, Alan Yuille

pdf:https://arxiv.org/abs/1703.01513

code: unofficial-tensorflow :

https://github.com/aqibsaeed/Genetic-CNN

12.MetaQNN

Designing Neural Network Architectures using Reinforcement Learning

Bowen Baker, Otkrist Gupta, Nikhil Naik, Ramesh Raskar

pdf:https://arxiv.org/abs/1703.01513

code: official :https://github.com/bowenbaker/metaqnn

13.PyramidNet

Deep Pyramidal Residual Networks

Dongyoon Han, Jiwhan Kim, Junmo Kim

pdf:https://arxiv.org/abs/1610.02915

code: official :

https://github.com/jhkim89/PyramidNet

code: unofficial-pytorch :

https://github.com/dyhan0920/PyramidNet-PyTorch

14.DenseNet

Densely Connected Convolutional Networks

Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger

pdf:https://arxiv.org/abs/1608.06993

code: official :

https://github.com/liuzhuang13/DenseNet

code: unofficial-keras :

https://github.com/titu1994/DenseNet

code: unofficial-caffe :

https://github.com/shicai/DenseNet-Caffe

code: unofficial-tensorflow :

https://github.com/YixuanLi/densenet-tensorflow

code: unofficial-pytorch :

https://github.com/YixuanLi/densenet-tensorflow

code: unofficial-pytorch :

https://github.com/bamos/densenet.pytorch

code: unofficial-keras :

https://github.com/flyyufelix/DenseNet-Keras

15.FractalNet

FractalNet: Ultra-Deep Neural Networks without Residuals

Gustav Larsson, Michael Maire, Gregory Shakhnarovich

pdf:https://arxiv.org/abs/1605.07648

code: unofficial-caffe :

https://github.com/gustavla/fractalnet

code: unofficial-keras :

https://github.com/snf/keras-fractalnet

code: unofficial-tensorflow :

https://github.com/tensorpro/FractalNet

16.ResNext

Aggregated Residual Transformations for Deep Neural Networks

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, Kaiming He

pdf:https://arxiv.org/abs/1611.05431

code: official :

https://github.com/facebookresearch/ResNeXt

code: keras-applications :

https://github.com/keras-team/keras-applications/blob/master/keras_applications/resnext.py

code: unofficial-pytorch :

https://github.com/prlz77/ResNeXt.pytorch

code: unofficial-keras :

https://github.com/titu1994/Keras-ResNeXt

code: unofficial-tensorflow :

https://github.com/taki0112/ResNeXt-Tensorflow

code: unofficial-tensorflow :

https://github.com/wenxinxu/ResNeXt-in-tensorflow

17.IGCV1

Interleaved Group Convolutions for Deep Neural Networks

Ting Zhang, Guo-Jun Qi, Bin Xiao, Jingdong Wang

pdf:https://arxiv.org/abs/1707.02725

code official :

https://github.com/hellozting/InterleavedGroupConvolutions

18.Residual Attention Network

Residual Attention Network for Image Classification

Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng Li, Honggang Zhang, Xiaogang Wang, Xiaoou Tang

pdf:https://arxiv.org/abs/1704.06904

code: official :

https://github.com/fwang91/residual-attention-network

code: unofficial-pytorch :

https://github.com/tengshaofeng/ResidualAttentionNetwork-pytorch

code: unofficial-gluon :

https://github.com/PistonY/ResidualAttentionNetwork

code: unofficial-keras :

https://github.com/koichiro11/residual-attention-network

19.Xception

Xception: Deep Learning with Depthwise Separable Convolutions

Fran?ois Chollet

pdf:https://arxiv.org/abs/1610.02357

code: unofficial-pytorch :

https://github.com/jfzhang95/pytorch-deeplab-xception/blob/master/modeling/backbone/xception.py

code: unofficial-tensorflow :

https://github.com/kwotsin/TensorFlow-Xception

code: unofficial-caffe :

https://github.com/yihui-he/Xception-caffe

code: unofficial-pytorch :

https://github.com/tstandley/Xception-PyTorch

code: keras-applications :

https://github.com/keras-team/keras-applications/blob/master/keras_applications/xception.py

20.MobileNet

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam

pdf:https://arxiv.org/abs/1704.04861

code: unofficial-tensorflow :

https://github.com/Zehaos/MobileNet

code: unofficial-caffe :

https://github.com/shicai/MobileNet-Caffe

code: unofficial-pytorch :

https://github.com/marvis/pytorch-mobilenet

code: keras-applications :

https://github.com/keras-team/keras-applications/blob/master/keras_applications/mobilenet.py

21.PolyNet

PolyNet: A Pursuit of Structural Diversity in Very Deep Networks

Xingcheng Zhang, Zhizhong Li, Chen Change Loy, Dahua Lin

pdf:https://arxiv.org/abs/1611.05725

code: official :

https://github.com/open-mmlab/polynet

22.DPN

Dual Path Networks

Yunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin, Shuicheng Yan, Jiashi Feng

pdf:https://arxiv.org/abs/1707.01629

code: official :

https://github.com/cypw/DPNs

code: unoffical-keras :

https://github.com/titu1994/Keras-DualPathNetworks

code: unofficial-pytorch :

https://github.com/oyam/pytorch-DPNs

code: unofficial-pytorch :

https://github.com/rwightman/pytorch-dpn-pretrained

23.Block-QNN

Practical Block-wise Neural Network Architecture Generation

Zhao Zhong, Junjie Yan, Wei Wu, Jing Shao, Cheng-Lin Liu

pdf:https://arxiv.org/abs/1708.05552

24.CRU-Net

Sharing Residual Units Through Collective Tensor Factorization in Deep Neural Networks

Chen Yunpeng, Jin Xiaojie, Kang Bingyi, Feng Jiashi, Yan Shuicheng

pdf:https://arxiv.org/abs/1703.02180

code official :

https://github.com/cypw/CRU-Net

code unofficial-mxnet :

https://github.com/bruinxiong/Modified-CRUNet-and-Residual-Attention-Network.mxnet

25.ShuffleNet

ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, Jian Sun

pdf:https://arxiv.org/abs/1707.01083

code: unofficial-tensorflow :

https://github.com/MG2033/ShuffleNet

code: unofficial-pytorch :

https://github.com/jaxony/ShuffleNet

code: unofficial-caffe :

https://github.com/farmingyard/ShuffleNet

code: unofficial-keras :

https://github.com/scheckmedia/keras-shufflenet

26.CondenseNet

CondenseNet: An Efficient DenseNet using Learned Group Convolutions

Gao Huang, Shichen Liu, Laurens van der Maaten, Kilian Q. Weinberger

pdf:https://arxiv.org/abs/1711.09224

code: official :

https://github.com/ShichenLiu/CondenseNet

code: unofficial-tensorflow :

https://github.com/markdtw/condensenet-tensorflow

27.NasNet

Learning Transferable Architectures for Scalable Image Recognition

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, Quoc V. Le

pdf:https://arxiv.org/abs/1707.07012

code: unofficial-keras :

https://github.com/titu1994/Keras-NASNet

code: keras-applications :

https://github.com/keras-team/keras-applications/blob/master/keras_applications/nasnet.py

code: unofficial-pytorch :

https://github.com/wandering007/nasnet-pytorch

code: unofficial-tensorflow :

https://github.com/yeephycho/nasnet-tensorflow

28.MobileNetV2

MobileNetV2: Inverted Residuals and Linear Bottlenecks

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen

pdf:https://arxiv.org/abs/1801.04381

code: unofficial-keras :

https://github.com/xiaochus/MobileNetV2

code: unofficial-pytorch :

https://github.com/Randl/MobileNetV2-pytorch

code: unofficial-tensorflow :

https://github.com/neuleaf/MobileNetV2

29.IGCV2

IGCV2: Interleaved Structured Sparse Convolutional Neural Networks

Guotian Xie, Jingdong Wang, Ting Zhang, Jianhuang Lai, Richang Hong, Guo-Jun Qi

pdf:https://arxiv.org/abs/1804.06202

30.hier

Hierarchical Representations for Efficient Architecture Search

Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, Koray Kavukcuoglu

pdf:https://arxiv.org/abs/1711.00436

31.PNasNet

Progressive Neural Architecture Search

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan Huang, Kevin Murphy

pdf:https://arxiv.org/abs/1712.00559

code: tensorflow-slim :

https://github.com/tensorflow/models/blob/master/research/slim/nets/nasnet/pnasnet.py

code: unofficial-pytorch :

https://github.com/chenxi116/PNASNet.pytorch

code: unofficial-tensorflow :

https://github.com/chenxi116/PNASNet.TF

32.AmoebaNet

Regularized Evolution for Image Classifier Architecture Search

Esteban Real, Alok Aggarwal, Yanping Huang, Quoc V Le

pdf:https://arxiv.org/abs/1802.01548

code: tensorflow-tpu :

https://github.com/tensorflow/tpu/tree/master/models/official/amoeba_net

33.SENet

Squeeze-and-Excitation Networks

Jie Hu, Li Shen, Samuel Albanie, Gang Sun, Enhua Wu

pdf:https://arxiv.org/abs/1709.01507

code: official :

https://github.com/hujie-frank/SENet

code: unofficial-pytorch :

https://github.com/moskomule/senet.pytorch

code: unofficial-tensorflow :

https://github.com/taki0112/SENet-Tensorflow

code: unofficial-caffe :

https://github.com/shicai/SENet-Caffe

code: unofficial-mxnet :

https://github.com/bruinxiong/SENet.mxnet

34.ShuffleNetV2

ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, Jian Sun

pdf:https://arxiv.org/abs/1807.11164

code: unofficial-pytorch :

https://github.com/Randl/ShuffleNetV2-pytorch

code: unofficial-keras :

https://github.com/opconty/keras-shufflenetV2

code: unofficial-pytorch :

https://github.com/Bugdragon/ShuffleNet_v2_PyTorch

code: unofficial-caff2:

https://github.com/wolegechu/ShuffleNetV2.Caffe2

35.IGCV3

IGCV3: Interleaved Low-Rank Group Convolutions for Efficient Deep Neural Networks

Ke Sun, Mingjie Li, Dong Liu, Jingdong Wang

pdf:https://arxiv.org/abs/1806.00178

code: official :

https://github.com/homles11/IGCV3

code: unofficial-pytorch :

https://github.com/xxradon/IGCV3-pytorch

code: unofficial-tensorflow :

https://github.com/ZHANG-SHI-CHANG/IGCV3

36.MNasNet

MnasNet: Platform-Aware Neural Architecture Search for Mobile

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Quoc V. Le

pdf:https://arxiv.org/abs/1807.11626

code: unofficial-pytorch :

https://github.com/AnjieZheng/MnasNet-PyTorch

code: unofficial-caffe :

https://github.com/LiJianfei06/MnasNet-caffe

code: unofficial-MxNet :

https://github.com/chinakook/Mnasnet.MXNet

code: unofficial-keras :

https://github.com/Shathe/MNasNet-Keras-Tensorflow

責任編輯:lq

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • CV
    CV
    +關注

    關注

    0

    文章

    53

    瀏覽量

    17152
  • 圖像分類
    +關注

    關注

    0

    文章

    96

    瀏覽量

    12174
  • 計算機視覺
    +關注

    關注

    9

    文章

    1709

    瀏覽量

    46784

原文標題:?CV 圖像分類常見的 36 個模型匯總!附完整論文和代碼

文章出處:【微信號:vision263com,微信公眾號:新機器視覺】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    工業相機圖像采集卡:機器視覺的核心樞紐

    工業相機圖像采集卡是用于連接工業相機與計算機的關鍵硬件設備,主要負責將相機輸出的圖像信號轉換為計算機可處理的數字信號,并實現高速、穩定的數據傳輸。它在工業自動化、機器
    的頭像 發表于 05-21 12:13 ?200次閱讀
    工業相機<b class='flag-5'>圖像</b>采集卡:機器<b class='flag-5'>視覺</b>的核心樞紐

    基于LockAI視覺識別模塊:C++使用圖像的統計信息

    ./Test-Image-information-statistics 5.2 運行效果 在運行上述代碼時,會輸出以下結果: 6. 總結 通過上述內容,我們介紹了如何使用 OpenCV 提取圖像的 ROI、轉換顏色空間、
    發表于 05-08 10:31

    基于LockAI視覺識別模塊:C++圖像的基本運算

    圖像處理中,理解圖像的基本操作是掌握計算機視覺技術的關鍵。本文章將介紹 基于LockAI視覺識別模塊下OpenCV 中
    發表于 05-06 16:56

    英飛凌邊緣AI平臺通過Ultralytics YOLO模型增加對計算機視覺的支持

    計算機視覺的支持,擴大了當前對音頻、雷達和其他時間序列信號數據的支持范圍。在增加這項支持后,該平臺將能夠用于開發低功耗、低內存的邊緣AI視覺模型。這將給諸多應用領域的機器學習開發人員
    的頭像 發表于 03-11 15:11 ?392次閱讀
    英飛凌邊緣AI平臺通過Ultralytics YOLO模型增加對<b class='flag-5'>計算機</b><b class='flag-5'>視覺</b>的支持

    Arm KleidiCV與OpenCV集成助力移動端計算機視覺性能優化

    生成式及多模態人工智能 (AI) 工作負載的廣泛增長,推動了對計算機視覺 (CV) 技術日益高漲的需求。此類技術能夠解釋并分析源自現實世界的視覺信息,并可應用于人臉識別、照片
    的頭像 發表于 02-24 10:15 ?571次閱讀

    AI模型部署邊緣設備的奇妙之旅:如何在邊緣端部署OpenCV

    、車輛和其他重要元素。 2 基礎知識 OpenCV 是一個開源的計算機視覺和機器學習軟件庫,廣泛用于圖像處理、視頻捕捉、物體檢測等領域。一些常用操作及其目的: 讀取圖片 使用
    發表于 12-14 09:31

    量子計算機與普通計算機工作原理的區別

    ? 本文介紹了量子計算機與普通計算機工作原理的區別。 量子計算是一個新興的研究領域,科學家們利用量子力學,制造出具有革命性能力的計算機。雖然
    的頭像 發表于 11-24 11:00 ?1506次閱讀
    量子<b class='flag-5'>計算機</b>與普通<b class='flag-5'>計算機</b>工作原理的區別

    【小白入門必看】一文讀懂深度學習計算機視覺技術及學習路線

    ,幫我們做決定。整個過程就是為了讓機器能看懂圖像,然后根據這些圖像來做出聰明的選擇。二、計算機視覺實現起來難嗎?人類依賴視覺,找輛汽車輕而易
    的頭像 發表于 10-31 17:00 ?1247次閱讀
    【小白入門必看】一文讀懂深度學習<b class='flag-5'>計算機</b><b class='flag-5'>視覺</b>技術及學習路線

    ARMxy嵌入式計算機在機器視覺中的卓越表現

    嵌入式視覺是指在嵌入式系統中使用計算機視覺技術,與經常所說的機器視覺系統的區別在于嵌入式視覺系統是多合一的設備,簡單來說嵌入式
    的頭像 發表于 10-10 14:47 ?551次閱讀
    ARMxy嵌入式<b class='flag-5'>計算機</b>在機器<b class='flag-5'>視覺</b>中的卓越表現

    計算機存儲器的分類及其區別

    計算機存儲器是計算機系統中不可或缺的重要部分,用于存放程序和數據。隨著科技的進步,存儲器的種類越來越多,功能和性能也日益豐富。一般來說,計算機存儲器可以按照不同的分類標準進行
    的頭像 發表于 09-05 10:40 ?4024次閱讀

    簡述計算機總線的分類

    計算機總線作為計算機系統中連接各個功能部件的公共通信干線,其結構和分類對于理解計算機硬件系統的工作原理至關重要。以下是對計算機總線結構和
    的頭像 發表于 08-26 16:23 ?5187次閱讀

    計算機視覺有哪些優缺點

    計算機視覺作為人工智能領域的一個重要分支,旨在使計算機能夠像人類一樣理解和解釋圖像和視頻中的信息。這一技術的發展不僅推動了多個行業的變革,也
    的頭像 發表于 08-14 09:49 ?2055次閱讀

    圖像處理器與計算機視覺有什么關系和區別

    圖像處理器與計算機視覺是兩個在圖像處理領域緊密相連但又有所區別的概念。它們之間的關系和區別可以從多個維度進行探討。
    的頭像 發表于 08-14 09:36 ?1050次閱讀

    計算機視覺中的圖像融合

    在許多計算機視覺應用中(例如機器人運動和醫學成像),需要將多個圖像的相關信息整合到單一圖像中。這種圖像融合可以提供更高的可靠性、準確性和數據
    的頭像 發表于 08-01 08:28 ?1143次閱讀
    <b class='flag-5'>計算機</b><b class='flag-5'>視覺</b>中的<b class='flag-5'>圖像</b>融合

    計算機視覺技術的AI算法模型

    計算機視覺技術作為人工智能領域的一個重要分支,旨在使計算機能夠像人類一樣理解和解釋圖像及視頻中的信息。為了實現這一目標,
    的頭像 發表于 07-24 12:46 ?1820次閱讀
    主站蜘蛛池模板: 色宅男 | 国产视频一区二 | 天天干天天射天天插 | 久久精品视频9 | 二级黄绝大片中国免费视频 | 欧美猛交喷潮在线播放 | 婷婷综合激六月情网 | 天天色天天 | 又粗又长又色又爽视频 | 丁香五月网久久综合 | 欧美日韩国产另类一区二区三区 | 亚洲视频在线观看一区 | 久久99精品久久久久久久野外 | 亚洲精品一线二线三线 | www日本高清 | 荡女妇边被c边呻吟久久 | 午夜影院一区二区三区 | 性 色 黄 一级 | 天天操夜夜欢 | 四虎传媒 | 国产色视频网站免费观看 | 日本aaaa级毛片在线看 | 18岁女人毛片 | 黄色xxxx | 国产精品福利在线观看免费不卡 | 成人欧美精品久久久久影院 | 色狠狠综合 | 午夜视频在线观看免费视频 | 国产高清一区二区 | 韩国三级视频在线 | 中文字幕一区二区三区永久 | 在线免费看黄 | 国产综合精品久久亚洲 | 国产精品嫩草影院在线播放 | 视色4se在线视频播放 | 国产好深好硬好爽我还要视频 | 国产美女视频一区二区二三区 | 激情四月婷婷 | 五月婷婷亚洲综合 | 四虎影院观看视频 | 狠狠干夜夜操 |