在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

1個(gè)AI模型=5輛汽車終身碳排量,AI為何如此耗能?

電子設(shè)計(jì) ? 來源:電子設(shè)計(jì) ? 作者:電子設(shè)計(jì) ? 2021-01-21 03:27 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

整理 | 彎月 責(zé)編 | 鄭麗媛
出品 | CSDN(ID:CSDNnews)

根據(jù)最新的研究結(jié)果,訓(xùn)練一個(gè)普通的 AI 模型消耗的能源相當(dāng)于五輛汽車一生排放的碳總量,而 BERT 模型的碳排放量約為 1400 磅二氧化碳,這相當(dāng)于一個(gè)人來回坐飛機(jī)橫穿美國。為何 AI 模型會(huì)如此費(fèi)電,它們與傳統(tǒng)的數(shù)據(jù)中心計(jì)算有何不同?

訓(xùn)練效率低下

傳統(tǒng)數(shù)據(jù)中心負(fù)責(zé)處理的工作包括視頻流,電子郵件和社交媒體。AI 所需的計(jì)算量則更多,因?yàn)樗枰x取大量的數(shù)據(jù)、持續(xù)學(xué)習(xí),直到完成訓(xùn)練。

與人類的學(xué)習(xí)方式相比,AI 的訓(xùn)練效率非常低下。現(xiàn)代 AI 使用人工神經(jīng)網(wǎng)絡(luò),這是模擬人腦神經(jīng)元的數(shù)學(xué)計(jì)算。每兩個(gè)相鄰神經(jīng)元的連接強(qiáng)度都是神經(jīng)網(wǎng)絡(luò)上的一個(gè)參數(shù),名叫權(quán)重。神經(jīng)網(wǎng)絡(luò)的訓(xùn)練則需要從隨機(jī)權(quán)重開始,一遍遍地運(yùn)行和調(diào)整參數(shù),直到輸出與正確答案一致為止。

常見的一種訓(xùn)練語言神經(jīng)網(wǎng)絡(luò)的方法是,從維基百科和新聞媒體網(wǎng)站下載大量文本,然后把一些詞語遮擋起來,并要求 AI 猜測被遮擋起來的詞語。剛開始的時(shí)候,AI 會(huì)全部搞錯(cuò),但是,經(jīng)過不斷地調(diào)整后,AI 會(huì)逐漸學(xué)習(xí)數(shù)據(jù)中的模式,最終整個(gè)神經(jīng)網(wǎng)絡(luò)都會(huì)變得非常準(zhǔn)確。

相信你聽說過 BERT 模型,基于變換器的雙向編碼器表示技術(shù)(Bidirectional Encoder Representations from Transformers,簡稱 BERT),這是一項(xiàng)由 Google 提出的自然語言處理(NLP)的預(yù)訓(xùn)練技術(shù)。該模型使用了來自維基百科和其他文章的 33 億個(gè)單詞,而且在整個(gè)訓(xùn)練期間,BERT 讀取了該數(shù)據(jù)集 40 次。相比之下,一個(gè) 5 歲的孩子學(xué)說話只需要聽到 4500 萬個(gè)單詞,比 BERT 少3000倍。

尋找最佳結(jié)構(gòu)

語言模型構(gòu)建成本如此之高的原因之一在于,在開發(fā)模型期間,上述訓(xùn)練過程需要反復(fù)多次。因?yàn)檠芯咳藛T需要將神經(jīng)網(wǎng)絡(luò)調(diào)整到最優(yōu),即確定神經(jīng)元的個(gè)數(shù)、神經(jīng)元之間的連接數(shù)以及各個(gè)權(quán)重。他們需要反復(fù)嘗試很多組合,才能提高神經(jīng)網(wǎng)絡(luò)的準(zhǔn)確度。相比之下,人類的大腦不需要尋找最佳結(jié)構(gòu),經(jīng)過幾億年的進(jìn)化,人類大腦已具備這種結(jié)構(gòu)。

隨著各大公司和學(xué)術(shù)界在 AI 領(lǐng)域的競爭愈演愈烈,不斷提高技術(shù)水平的壓力也越來越大。在自動(dòng)翻譯等難度巨大的任務(wù)中,如果能將準(zhǔn)確度提高 1%,也將被視為重大的進(jìn)步,可以作為宣傳產(chǎn)品的籌碼。然而,為了獲得這 1% 的提升,研究人員需要嘗試成千上萬的結(jié)構(gòu)來訓(xùn)練模型,直到找到最佳模型。

隨著模型不斷發(fā)展,模型的復(fù)雜度逐年攀高。另一款與 BERT 類似的最新語言模型 GPT-2,其神經(jīng)網(wǎng)絡(luò)包含 15 億個(gè)權(quán)重。而 GPT-3 由于其高精度,引起了業(yè)界的轟動(dòng),但其權(quán)重高達(dá) 1750 億個(gè)。

此外,AI 模型的訓(xùn)練需要在專用硬件(例如圖形處理器)上進(jìn)行,這些硬件的功耗普遍高于傳統(tǒng) CPU。如果你的筆記本電腦加載了優(yōu)質(zhì)的顯卡,可以玩很多高端游戲,那么你肯定會(huì)注意到這臺(tái)機(jī)器產(chǎn)生的熱量也比普通電腦高很多。

所有這些都表明,開發(fā)先進(jìn)的 AI 模型需要大量的碳排放量。除非我們能夠利用百分百可再生能源,否則真的懷疑 AI 的進(jìn)步與減少溫室氣體排放以及減緩氣候變化,孰重孰輕?是否真的可以功過相抵?

最后,開發(fā) AI 的耗資如此巨大,能夠承擔(dān)得起各項(xiàng)費(fèi)用的公司與機(jī)構(gòu)實(shí)在少之又少,最終究竟應(yīng)該開發(fā)哪種模型的決定權(quán)無疑也落到了這群人的手中。

AI 模型訓(xùn)練應(yīng)該適可而止

本文并不是要否定人工智能研究的未來,只不過在訓(xùn)練 AI 模型的時(shí)候,我們需要采用更高效的方法,而且應(yīng)該做到適可而止。

隨著 AI 模型訓(xùn)練方法的效率提升,相信訓(xùn)練的成本也會(huì)下降。同時(shí),我們需要在訓(xùn)練模型的成本和使用模型的成本之間權(quán)衡取舍。例如,在 AI 模型準(zhǔn)確度到達(dá)一定高度后,每提升 1% 都需要付出巨大的精力,而實(shí)際得到的收益卻很少。不追求極致,更多地使用“適可而止”的模型,不僅可以降低碳排放量,而且也能為我們帶來更大獲益。

審核編輯 黃昊宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4812

    瀏覽量

    103360
  • AI
    AI
    +關(guān)注

    關(guān)注

    88

    文章

    34918

    瀏覽量

    278117
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    如何賦能醫(yī)療AI模型應(yīng)用?

    “百模大戰(zhàn)”。不僅如此,這些通用AI模型還逐漸滲透到各個(gè)垂直行業(yè)中,其中生命科學(xué)和醫(yī)療健康行業(yè)成為了拓展速度較快的一個(gè)領(lǐng)域。從2023年2月至10月初,國內(nèi)市場上
    的頭像 發(fā)表于 05-07 09:36 ?245次閱讀
    如何賦能醫(yī)療<b class='flag-5'>AI</b>大<b class='flag-5'>模型</b>應(yīng)用?

    【「零基礎(chǔ)開發(fā)AI Agent」閱讀體驗(yàn)】+ 入門篇學(xué)習(xí)

    的是基礎(chǔ)篇,主要從為什么要學(xué)習(xí)AI Agent和開發(fā)AI Agent的知識(shí)儲(chǔ)備入手進(jìn)行介紹。作為入門AI Agent的小白還是很有必要學(xué)習(xí)的。這里將一些重要觀點(diǎn)作個(gè)歸納
    發(fā)表于 05-02 09:26

    海思SD3403邊緣計(jì)算AI數(shù)據(jù)訓(xùn)練概述

    模型,將模型轉(zhuǎn)化為嵌入式AI模型模型升級(jí)AI攝像機(jī),進(jìn)行
    發(fā)表于 04-28 11:11

    【「零基礎(chǔ)開發(fā)AI Agent」閱讀體驗(yàn)】+初品Agent

    。 Agent在發(fā)展過程中,經(jīng)歷了5個(gè)階段,即: 1)符號(hào)Agent階段 2)反應(yīng)式Agent階段 3)基于強(qiáng)化學(xué)習(xí)的Agent階段 4)帶遷移學(xué)習(xí)和元學(xué)習(xí)的Agent階段 5)基于大
    發(fā)表于 04-22 11:51

    首創(chuàng)開源架構(gòu),天璣AI開發(fā)套件讓端側(cè)AI模型接入得心應(yīng)手

    的自有模型移植,使首字詞生態(tài)速度比云端方案提升70%,賦能絕影多模態(tài)智能座艙強(qiáng)大的端側(cè)運(yùn)行能力,讓汽車擁有“有趣的靈魂”。 不僅如此,天璣AI開發(fā)套件已經(jīng)接入NVIDIA TAO生態(tài)
    發(fā)表于 04-13 19:52

    訓(xùn)練好的ai模型導(dǎo)入cubemx不成功怎么處理?

    訓(xùn)練好的ai模型導(dǎo)入cubemx不成功咋辦,試了好幾個(gè)模型壓縮了也不行,ram占用過大,有無解決方案?
    發(fā)表于 03-11 07:18

    AI Agent 應(yīng)用與項(xiàng)目實(shí)戰(zhàn)》----- 學(xué)習(xí)如何開發(fā)視頻應(yīng)用

    開發(fā)一個(gè)視頻內(nèi)容生成Agent。 訪問語聚AI平臺(tái)官網(wǎng) ,進(jìn)行注冊(cè)或登錄。 在平臺(tái)首頁,了解語聚AI的功能和應(yīng)用場景,特別是其支持的視頻生成相關(guān)的AI
    發(fā)表于 03-05 19:52

    霍爾電流傳感器的原邊端如何接入AI模型

    霍爾電流傳感器的原邊端如何接入AI模型,以便AI分析問題解決問題?話題會(huì)不會(huì)太超前?現(xiàn)在正式AI風(fēng)口啊,豬都要起飛了
    發(fā)表于 03-03 15:18

    AI模型托管原理

    AI模型托管的核心在于將訓(xùn)練好的AI模型部署在云端或邊緣服務(wù)器上,由第三方平臺(tái)提供模型運(yùn)行、管理和優(yōu)化等服務(wù)。下面,
    的頭像 發(fā)表于 02-26 10:31 ?595次閱讀

    DeepSeek模型為何掀起如此大的波瀾

    DeepSeek-R1 是中國初創(chuàng)公司 DeepSeek 推出的人工智能模型,不久前,在人工智能開源平臺(tái) Hugging Face 上發(fā)布數(shù)小時(shí),便躍居下載量和活躍度最高模型的榜首;同時(shí)因其促使
    的頭像 發(fā)表于 02-11 09:13 ?722次閱讀

    AI模型托管原理分析

    AI模型托管是指將訓(xùn)練好的AI模型部署在云端或邊緣服務(wù)器上,由第三方平臺(tái)提供模型運(yùn)行、管理和優(yōu)化等服務(wù)。以下,
    的頭像 發(fā)表于 11-07 09:33 ?779次閱讀

    AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第二章AI for Science的技術(shù)支撐學(xué)習(xí)心得

    for Science的技術(shù)支撐”的學(xué)習(xí)心得,可以從以下幾個(gè)方面進(jìn)行歸納和總結(jié): 1. 技術(shù)基礎(chǔ)的深入理解 在閱讀第二章的過程中,我對(duì)于AI for Science所需的技術(shù)基礎(chǔ)有了更加深入的理解。這一章詳細(xì)闡述了
    發(fā)表于 10-14 09:16

    ai模型ai框架的關(guān)系是什么

    AI模型AI框架是人工智能領(lǐng)域中兩個(gè)重要的概念,它們之間的關(guān)系密切且復(fù)雜。 AI模型的定義
    的頭像 發(fā)表于 07-16 10:07 ?8.5w次閱讀

    ai模型和傳統(tǒng)ai的區(qū)別在哪?

    的BERT模型使用了33億個(gè)參數(shù),而傳統(tǒng)AI模型通常只有幾千到幾百萬個(gè)參數(shù)。 模型復(fù)雜度
    的頭像 發(fā)表于 07-16 10:06 ?2636次閱讀

    AI模型AI框架的關(guān)系

    在探討AI模型AI框架的關(guān)系時(shí),我們首先需要明確兩者的基本概念及其在人工智能領(lǐng)域中的角色。AI模型通常指的是具有極大規(guī)模、高度復(fù)雜性和
    的頭像 發(fā)表于 07-15 11:42 ?1813次閱讀
    主站蜘蛛池模板: 亚洲国产精品热久久2022 | 天堂社区在线观看 | 国产色视频在线 | 夜夜骑日日射 | 狠狠色婷婷丁香六月 | 国产高清视频免费最新在线 | 欧美三级在线免费观看 | 亚洲人成综合网站在线 | 韩日一级毛片 | 国产成人无精品久久久久国语 | 国产专区日韩精品欧美色 | 天天综合网天天综合色 | 欧洲freexxxx性 | 国产精品四虎在线观看免费 | 好爽毛片一区二区三区四 | 视频1区 | 中文网丁香综合网 | 奇米色88欧美一区二区 | 日日噜噜噜夜夜爽爽狠狠视频 | 丁香六月激情婷婷 | 成人免费aaaaa毛片 | 成人看的一级毛片 | 天天操天天干天搞天天射 | 亚洲色图狠狠干 | 日本免费看黄 | 日本在线视 | 国产裸露片段精华合集链接 | 九色国产在线 | 欧美69xx| 欧美爱爱网址 | 欧美日韩国产成人高清视频 | 久久久久久久久久免免费精品 | 精品国产理论在线观看不卡 | av在线色 | 35pao免费视频 | 加勒比精品久久一区二区三区 | 欲色影院 | 国产成人在线影院 | 在线亚洲精品 | 日本欧美一区二区三区视频 | 深夜网站免费 |