據最新一期《自然·物理學》報道,英國格拉斯哥大學的物理學家首次找到使用量子糾纏光子來將信息編碼為全息圖的方法。這一突破了傳統全息方法局限性的新型量子全息術,將允許創建更高分辨率、更低噪聲的圖像,幫助揭示更好的細胞細節,進一步了解生物學在細胞水平上的功能。
全息術作為打印在信用卡和護照上的安全圖像而為人所知,但其還有許多其他實際應用,包括數據存儲、醫學成像等。經典全息術通過將激光束分成兩條路徑來創建三維物體的二維渲染。一束激光直接投射在感光底片上,稱為參考光束;另一束激光投射在物體上,經物體反射或者透射,就攜帶有物體的有關信息,稱為物光束。物光束經過處理也投射在感光底片的同一區域上。
全息圖是通過測量兩束光在相交處的相位差來創建的。相位是物光束和參考光束的波混合并相互干擾的量,這一過程由光的“相干”屬性實現。
格拉斯哥團隊的新量子全息術同樣使用了分成兩路的激光束,但與經典全息術不同的是,激光束永遠不會重合。取而代之的是,該過程利用了量子糾纏的獨特特性(愛因斯坦的“遠距離幽靈”效應),即使光束被永遠分開,它也可以收集構造全息圖所需的相干信息。
研究人員首先通過特殊的非線性晶體發出藍色激光,該晶體將光束分成兩路,在此過程中產生糾纏的光子。這些光子在行進方向和偏振方向上都糾纏在一起。
然后,兩條糾纏的光子流沿著不同的路徑發送。一束光子流(相當于經典全息術中的物光束)用于通過測量光子通過時的減速來探測目標物體的厚度和偏振響應。光的波形在穿過物體時會發生不同程度的偏移,從而改變了光的相位。
同時,相當于參考光束的另一束糾纏光子流撞擊一個空間光調制器。空間光調制器是一種可部分減慢通過它們的光速的光學設備。一旦光子通過了調制器,與探測目標物體的糾纏光子流相比,其相位就有了不同。
在標準全息術中,兩條路徑之后將彼此疊加,并且它們之間的相位干擾程度將用于在相機上生成全息圖。而在研究人員團隊的新型量子全息術中,最引人注目的是光子穿過各自的目標后再也不會相互重疊。相反,因為光子被糾纏,所以每個光子分別經歷的相移會同時由兩者共享。
干擾現象會在遠端發生,全息圖將通過使用單獨的百萬像素數碼相機測量糾纏的光子位置之間的相關性來獲得。實驗顯示,相圖既可從諸如在液晶顯示器上編程的字母“UofG”之類的人造物體重構而來,也可從諸如透明膠帶、顯微鏡載玻片上的硅油滴和鳥羽之類的真實物體中重構而來。
研究人員表示,新研究擺脫了經典相干的局限,將全息術帶入了量子領域。使用糾纏光子提供了創建更清晰、更豐富的全息圖的新方法,這為該技術的實際應用開辟了新的可能性。
責任編輯:lq
-
量子
+關注
關注
0文章
478瀏覽量
25496 -
激光束
+關注
關注
0文章
73瀏覽量
10234 -
全息技術
+關注
關注
3文章
40瀏覽量
15046
原文標題:全息技術“量子飛躍”或徹底改變成像技術
文章出處:【微信號:MEMSensor,微信公眾號:MEMS】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
無所不能的MATLAB|證明曲速引擎的物理學原理
![無所不能的MATLAB|證明曲速引擎的<b class='flag-5'>物理學</b>原理](https://file1.elecfans.com/web3/M00/00/F5/wKgZPGdPtnqATAV9AAAPR8JrjpI622.gif)
NVIDIA 助力谷歌量子 AI 通過量子器件物理學模擬加快處理器設計
![NVIDIA 助力谷歌<b class='flag-5'>量子</b> AI 通過<b class='flag-5'>量子</b>器件<b class='flag-5'>物理學</b>模擬加快處理器設計](https://file1.elecfans.com/web1/M00/F5/63/wKgaoWc7-ouAFcDeAAGdJBWepuQ898.jpg)
糾纏光子對實現隱藏圖像編碼
![<b class='flag-5'>糾纏</b><b class='flag-5'>光子</b>對實現隱藏圖像<b class='flag-5'>編碼</b>](https://file1.elecfans.com//web2/M00/08/45/wKgaombwmk-ALn6gAAJoDqeRJeQ503.png)
基于神經網絡的全息圖生成算法
使用光子糾纏的自適應光學成像
![使用<b class='flag-5'>光子</b><b class='flag-5'>糾纏</b>的自適應光學成像](https://file1.elecfans.com//web2/M00/D5/CE/wKgZomYm5ZyAOsxmAAJN30cVqno790.png)
基于軌道電潤濕的液滴操控技術,有望用于新一代數字微流控平臺
![基于軌道電潤濕的液滴操控技術,有望用于新一代數字微流控平臺](https://file1.elecfans.com/web2/M00/D0/18/wKgZomYiRtCAdmiHAABRDx6QOUE551.png)
量子夢
【量子計算機重構未來 | 閱讀體驗】+ 了解量子疊加原理
量子半導體實現拓撲趨膚效應可用于制造微型高精度傳感器和放大器
拓撲量子器件的突破性進展
![拓撲<b class='flag-5'>量子</b>器件的突破性進展](https://file1.elecfans.com/web2/M00/BE/DE/wKgaomWvY8aADmEpAABYp2TFfGQ829.png)
評論