在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

研究機器視覺在工業(yè)檢測中應(yīng)用中到底有哪瓶頸呢?

新機器視覺 ? 來源:中國圖象圖形學(xué)報 ? 作者:雷林建, 孫勝利, ? 2021-03-12 10:46 ? 次閱讀

【太長看不下去只讀摘要,請看下面兩段就好】計算機視覺智能制造工業(yè)檢測中發(fā)揮著檢測識別和定位分析的重要作用,為提高工業(yè)檢測的檢測速率和準(zhǔn)確率以及智能自動化程度做出了巨大的貢獻(xiàn)。然而計算機視覺在應(yīng)用過程中一直存在技術(shù)應(yīng)用難點,其中3大瓶頸問題是:

計算機視覺應(yīng)用易受光照影響

樣本數(shù)據(jù)難以支持深度學(xué)習(xí)

先驗知識難以加入演化算法

本文針對計算機視覺應(yīng)用存在的3大瓶頸問題總結(jié)分析了問題現(xiàn)狀和已有解決方法。經(jīng)過深入分析發(fā)現(xiàn):

針對受光照影響大的問題,可以通過算法和圖像采集兩個環(huán)節(jié)解決;

針對樣本數(shù)據(jù)難以支持深度學(xué)習(xí)的問題,可以通過小樣本數(shù)據(jù)處理算法和樣本數(shù)量分布平衡方法解決;

針對先驗知識難以加入演化算法的問題,可以通過機器學(xué)習(xí)和強化學(xué)習(xí)解決。

【正文部分】

1 智能制造中的計算機視覺發(fā)展現(xiàn)狀及需求

1.1 智能制造中的計算機視覺發(fā)展現(xiàn)狀

計算機視覺的發(fā)展主要經(jīng)歷了4個階段,第1階段稱為計算視覺,第2階段是主動和目的視覺,第3階段是分層3維重建理論,第4階段是基于學(xué)習(xí)的視覺,如圖 1所示。

計算機視覺發(fā)展的4個階段 具體到智能制造業(yè)的應(yīng)用,工業(yè)檢測是計算機視覺應(yīng)用的主要方向。由于生產(chǎn)中不可避免會產(chǎn)生缺陷和誤差,導(dǎo)致部件或者產(chǎn)品出現(xiàn)殘次品。因此,在流水線后端需要檢測環(huán)節(jié)。目前大多采用人工檢測方法或是自動化程度不高的機器方法,這導(dǎo)致原本效率提高的流水線因為檢測環(huán)節(jié)再次緩慢下來。

因此計算機視覺檢測技術(shù)在智能制造工業(yè)檢測領(lǐng)域的應(yīng)用至關(guān)重要。目前各類相關(guān)研究非常廣泛,大到汽車制造業(yè)中的汽車車身視覺檢測,小到軸承表面缺陷檢測。表 1給出了基于圖像的軸承故障診斷的計算機視覺方法。

1.2 智能制造對計算機視覺技術(shù)的發(fā)展需求

智能制造業(yè)中涉及大量檢測環(huán)節(jié),如缺陷檢測、形變檢測、紋理檢測、尺寸檢測等。

計算機視覺技術(shù)作為檢測領(lǐng)域目前最有效的方法之一,必然會在工業(yè)檢測的應(yīng)用中掀起一場革命性的制造模式大轉(zhuǎn)變。它能再一次解放勞動力,大幅度提高制造業(yè)的生產(chǎn)效率,降低生產(chǎn)成本,減少生產(chǎn)環(huán)節(jié),促使生產(chǎn)線全自動化的形成。 但目前計算機視覺在智能制造工業(yè)檢測領(lǐng)域的實際應(yīng)用存在諸多瓶頸問題尚未解決,其中3個關(guān)鍵的瓶頸問題值得研究討論。

1) 實際智能制造業(yè)環(huán)境復(fù)雜、光源簡單,容易造成光照不均勻,難以解決圖像質(zhì)量受光照影響大的問題。在檢測領(lǐng)域的實際應(yīng)用中,由于工業(yè)場地環(huán)境變化的不確定性,會使計算機視覺的圖像采集環(huán)節(jié)受到影響。在工業(yè)檢測中,檢測的通常都是流水線上一致性很高的產(chǎn)品,需要檢測的缺陷通常也是相對微小的,因此對圖像的要求較高。除了保證相機的各參數(shù)一致以外,還需要控制環(huán)境因素的影響,這是工業(yè)檢測中特有的控制因素之一。由于環(huán)境變化隨機性大,使得控制光照成為智能制造檢測領(lǐng)域的計算機視覺關(guān)鍵瓶頸問題。

2)實際智能制造業(yè)中獲取萬級以上的平衡樣本數(shù)據(jù)代價較大,難以解決樣本數(shù)據(jù)不是以支持基于深度學(xué)習(xí)的計算機視覺檢測任務(wù)的問題。在所有學(xué)習(xí)方法中,樣本數(shù)據(jù)是最重要的因素之一。尤其是深度學(xué)習(xí),往往需要非常大量的樣本才能達(dá)到比較優(yōu)異的檢測效果。在一定數(shù)量級(欠學(xué)習(xí))之內(nèi),樣本和檢測效果甚至成正比關(guān)系。而在智能制造業(yè),樣本數(shù)據(jù)的采集卻是一大問題。因為企業(yè)追求利益,無法像做研究一樣順利進行樣本數(shù)據(jù)采集,甚至有些產(chǎn)品的總產(chǎn)量都達(dá)不到深度學(xué)習(xí)所需的樣本數(shù)據(jù)規(guī)模。

3)智能制造業(yè)中,計算機判定難以達(dá)到專業(yè)判定的水準(zhǔn),如何在算法中加入先驗知識以提高演化算法的效果是一大難題。如何有效利用先驗知識,降低深度學(xué)習(xí)對大規(guī)模標(biāo)注數(shù)據(jù)的依賴,成為目前業(yè)內(nèi)的主攻方向之一。由于先驗知識的形式多變,如何與深度學(xué)習(xí)有效結(jié)合是一大難點。具體到工業(yè)檢測領(lǐng)域,問題更加嚴(yán)峻,在需要解決上述問題的同時,還需要考慮如下難點:如何將比普通先驗知識更復(fù)雜的工業(yè)檢測專業(yè)知識轉(zhuǎn)化為知識圖譜等形式融入算法;如何建立工業(yè)檢測先驗知識的規(guī)范化、標(biāo)準(zhǔn)化和統(tǒng)一化;如何通過已有產(chǎn)品的先驗知識推測知識庫未收錄的其他類似產(chǎn)品的先驗知識。

2 智能制造中計算機視覺應(yīng)用易受光照影響的問題

2.1 受光照影響大的問題概述

工業(yè)檢測不同于其他檢測領(lǐng)域,不同工業(yè)產(chǎn)品的檢測通常也在不一樣的環(huán)境中進行。一般來說,工業(yè)產(chǎn)品的生產(chǎn)過程在開放式的車間或者倉庫環(huán)境中進行,自然采光差、光來源復(fù)雜、光照設(shè)備不專業(yè)是普遍存在的問題,加之智能制造領(lǐng)域?qū)τ跈z測的正確率和速率有著更為嚴(yán)苛的要求,光照控制作為提升識別率的重要途徑需要更好的技術(shù)加持。

對于大型智能制造工業(yè)現(xiàn)場,開放式的復(fù)雜工作環(huán)境容易造成拍攝圖像的過程中光照強度的大范圍變化。相比之下,小型工業(yè)現(xiàn)場的自然光照等其他干擾較小,但小型產(chǎn)品的檢測精細(xì)度更高,對于光照穩(wěn)定性的要求也隨之提高,控制光照的難度反而更高。實驗室穩(wěn)定光照條件下獲得的樣本數(shù)據(jù)集訓(xùn)練出的模型并不能在工業(yè)現(xiàn)場取得很好的檢測效果。不僅光照條件的苛刻性使得智能制造中的計算機視覺應(yīng)用難度增加,而且智能制造領(lǐng)域?qū)?zhǔn)確率的要求也更為嚴(yán)苛。因此,如何控制光照均勻性是目前一大瓶頸問題。

2.2 受光照影響大的解決方法

目前智能制造工業(yè)檢測領(lǐng)域計算機視覺中的光照問題研究大多從算法上入手。如基于Retinex的X光非均勻鋼絲繩芯輸送帶圖像校正和增強算法提出了一種基于機器視覺的非均勻光照輸送帶圖像校正和故障檢測算法。基于統(tǒng)計特性的光照歸一化方法充分考慮了圖像的光照局部性,通過對圖像局部的均值和方差進行調(diào)節(jié),引入線性插值方法,將對數(shù)變換與本文方法結(jié)合調(diào)整圖像的光照,可以很好地進行光照的歸一化。工業(yè)檢測的光照特性變化隨機,而此法可根據(jù)圖像的特性動態(tài)調(diào)整,具有可用性。

智能制造工業(yè)檢測領(lǐng)域中需要相機拍攝圖像以進一步通過計算機視覺技術(shù)完成處理分析,因此在圖像采集環(huán)節(jié)對光照加以控制是另一種常用方法。它的特點是可以避免復(fù)雜的算法實現(xiàn),但會增加硬件成本和復(fù)雜度。在針對某物體的圖像采集過程中,相機、鏡頭的配置會直接影響成像的效果,通過調(diào)試可確定最優(yōu)的相機、鏡頭配置。同時,外加光源可以有效地減弱環(huán)境光對圖像采集的干擾,保證一系列圖像的穩(wěn)定性,也能調(diào)整得到適合工業(yè)檢測的特定光照。

視覺獲取的最優(yōu)情形以及以光源和相機為主體的光照協(xié)調(diào)技術(shù)把相機和光源作為一個整體加以協(xié)調(diào),利用交替法優(yōu)化配置最優(yōu)光照和相機位置,使得在當(dāng)前環(huán)境下的圖像具有較高的平均亮度和對比度。此方法能提高樣本圖像數(shù)據(jù)的質(zhì)量,使光照的會聚指數(shù)上升約0.15 %,但也使得采集圖像的復(fù)雜度上升。數(shù)字?jǐn)z像機參數(shù)自適應(yīng)調(diào)整算法用以提高機器視覺系統(tǒng)對光照變化的魯棒性,它能根據(jù)外界環(huán)境的光照條件,在線調(diào)整數(shù)字?jǐn)z像機的參數(shù)和設(shè)置,以采集像素灰度在預(yù)設(shè)值范圍內(nèi)的圖像,有效減弱了光照變化對圖像灰度的影響,缺點在于實時調(diào)整對相機和調(diào)整算法的要求都很高,很難保證長時間精準(zhǔn)實現(xiàn),易丟失實時性。

3 智能制造中計算機視覺應(yīng)用的樣本數(shù)據(jù)難以支持深度學(xué)習(xí)的問題

3.1 樣本數(shù)據(jù)難以支持深度學(xué)習(xí)的問題概述

智能制造工業(yè)檢測中,除傳統(tǒng)的模板匹配方法,目前更主流的是基于深度學(xué)習(xí)的方法。因工業(yè)檢測的高準(zhǔn)確率需求,有監(jiān)督的深度學(xué)習(xí)能滿足要求。有監(jiān)督的深度學(xué)習(xí)的一大特點是需要已知類別標(biāo)簽的訓(xùn)練圖像數(shù)據(jù)集,這個訓(xùn)練集理論上包含的數(shù)據(jù)量越大,檢測的效果越好。但結(jié)合工業(yè)檢測的實際場景,難以采集這么大的樣本數(shù)據(jù)量。另外,制造行業(yè)中缺陷品的數(shù)量遠(yuǎn)遠(yuǎn)少于合格品,隨機獲取的訓(xùn)練集樣本將存在樣本分布不平衡的問題。即使在大樣本數(shù)據(jù)二分類問題中,樣本分布也應(yīng)該盡量做到每類占比50 %。

在智能制造領(lǐng)域,獲取樣本圖像數(shù)據(jù)的方法有兩種,一種是在流水線作業(yè)時在線采集,另一種是樣本擺拍的離線采集。 在流水線作業(yè)時在線采集的優(yōu)勢在于不影響工業(yè)生產(chǎn)即可完成樣本圖像數(shù)據(jù)的采集,圖像數(shù)據(jù)來自于工業(yè)現(xiàn)場,并且可采集最大等同于生產(chǎn)數(shù)量的樣本圖像數(shù)據(jù)集。但問題在于樣本類別按合格率分布,缺陷品的樣本圖像將遠(yuǎn)遠(yuǎn)小于合格品,樣本分布不平衡。其次工業(yè)現(xiàn)場的拍攝環(huán)境無法保證,容易造成樣本圖像的質(zhì)量不一,影響訓(xùn)練效果。 相對地,樣本擺拍的離線采集模式的優(yōu)點是可控的樣本分布,人工控制各類別的樣本數(shù)量分布一致;可控的實驗室拍攝環(huán)境,可以保證得到高質(zhì)量的樣本圖像。缺點也很明顯,收集樣本需花費大量時間,拍攝耗時耗力,訓(xùn)練模型不一定能適用于工業(yè)現(xiàn)場檢測,短時間內(nèi)無法得到大樣本圖像數(shù)據(jù)集。因此,樣本數(shù)據(jù)由于量小、不平衡難以支持深度學(xué)習(xí),成為目前的一大瓶頸問題。

3.2 樣本數(shù)據(jù)難以支持深度學(xué)習(xí)的解決方法

智能制造檢測領(lǐng)域的樣本數(shù)據(jù)存在難以獲取大量有效樣本數(shù)據(jù)的問題, 以及難以獲取各類樣本數(shù)量分布平衡的樣本數(shù)據(jù)集的問題。難以獲取大量有效樣本數(shù)據(jù)的問題可以轉(zhuǎn)化為針對小樣本數(shù)據(jù)如何取得良好檢測分類效果的問題,主要方法如表2所示。

表 2利用小樣本數(shù)據(jù)檢測分類的方法
Table 3Methods for detection classification using small sample data

針對難以獲取各類別樣本數(shù)量分布平衡的樣本數(shù)據(jù)集有如表 3的解決方法。

表3樣本分布不平衡的解決方法
Table 5Solution to sample distribution imbalance

研究結(jié)果表明,目前樣本數(shù)據(jù)難以支撐深度學(xué)習(xí)的問題主要包括樣本數(shù)據(jù)量小和樣本數(shù)據(jù)不均衡,對于這兩個問題的方法已有如上所述的研究體系和方法。此類樣本數(shù)據(jù)處理算法都是針對樣本的數(shù)量而不是樣本的內(nèi)容,因此在智能制造的工業(yè)檢測領(lǐng)域,使用上述方法調(diào)整樣本數(shù)據(jù)是完全可行的。

4 智能制造中計算機視覺應(yīng)用的先驗知識難以加入演化算法的問題

4.1 先驗知識難以加入演化算法的問題概述

計算機視覺在智能制造中的應(yīng)用本質(zhì)上是一種基于數(shù)據(jù)的方法,但在工業(yè)檢測領(lǐng)域難以獲取大量均勻的樣本數(shù)據(jù),因此研究者們提出將先驗知識加入計算機視覺算法中以期獲得更好的檢測效果。應(yīng)用基于先驗知識的方法,在訓(xùn)練階段可以配合樣本進行訓(xùn)練,提高模型參數(shù)的準(zhǔn)確性,降低學(xué)習(xí)難度,利于訓(xùn)練過程的收斂,從而提高預(yù)測的準(zhǔn)確度。在預(yù)測階段,能通過先驗知識對判定結(jié)果的校正,提高準(zhǔn)確率,也能提升檢測速度,避免偶然誤差的產(chǎn)生。目前先驗知識難以加入演化算法,更難以指導(dǎo)機器學(xué)習(xí)和深度學(xué)習(xí)等算法,并且也有很多需要解決的瓶頸問題。例如,如何將知識圖譜這種主要知識表示形式用于指導(dǎo)深度神經(jīng)網(wǎng)絡(luò);如何用自然語言指導(dǎo)強化學(xué)習(xí)中的智能體快速準(zhǔn)確地理解學(xué)習(xí);如何將遷移學(xué)習(xí)作為知識結(jié)合進強化學(xué)習(xí);如何通過領(lǐng)域知識將強化學(xué)習(xí)方法應(yīng)用到工業(yè)檢測中等。

4.2 先驗知識無法支持演化算法的解決方法

針對如何將先驗知識應(yīng)用到學(xué)習(xí)中以及以何種形式應(yīng)用的問題,目前有如下的研究和方法。一種是將樣本的緊密度信息作為先驗知識應(yīng)用到支持向量機的構(gòu)造中。通過對緊密度的置信度進行建模,通過模糊連接度可以將支持向量與含噪聲樣本進行區(qū)分。此方法能夠得到具有更好抗噪性能及分類能力的支持向量機,通過將樣本的緊密度信息作為先驗知識,不僅考慮到樣本類間中心距離,還考慮了樣本與類內(nèi)其他樣本的關(guān)系,通過模糊支持向量機加以區(qū)分。在工業(yè)檢測領(lǐng)域,缺陷樣本和正常樣本本身差距就不大,若能將樣本的緊密度信息加入訓(xùn)練,將有助于提升訓(xùn)練效果,能夠更加準(zhǔn)確地分離小缺陷、弱缺陷樣本。

宣冬梅等給出了兩種將先驗知識與深度學(xué)習(xí)模型融合的方法。第1種實質(zhì)上將深度學(xué)習(xí)得到的輸出作為給定樣本的條件概率,即加先驗知識的隨機深度學(xué)習(xí)分類器(random deep learning classifier with prior knowledge, RPK)。第2種加入一個參數(shù)用以調(diào)整先驗知識的稀疏性,即加先驗知識的確定型深度學(xué)習(xí)分類器(deterministic deep learning classifier with prior knowledge, DPK)。這兩種方法得到的分類器都能更好地預(yù)測結(jié)果。但這兩種方法在多分類任務(wù)的識別率上不夠高,只能精確地進行二分類任務(wù)。兩者都是在深度學(xué)習(xí)模型框架之內(nèi)加入了以矩陣形式存在的先驗知識,這些先驗知識可以是任何可矩陣化形式的內(nèi)容。在智能制造工業(yè)檢測領(lǐng)域,諸如用于檢測軸承缺陷的神經(jīng)網(wǎng)絡(luò)參數(shù)可作為用于檢測圓形注塑件的先驗知識矩陣。 另外,基于知識的強化學(xué)習(xí)在先驗知識應(yīng)用中有著較大的優(yōu)勢。此類方法在分析預(yù)測方向有較好的表現(xiàn),因此在工業(yè)檢測領(lǐng)域有巨大的發(fā)展前景。表4給出了4種典型方法。

表4基于知識的強化學(xué)習(xí)方法
Table 6Knowledge-based reinforcement learning method

上述研究結(jié)果表明,在先驗知識和深度學(xué)習(xí)結(jié)合的過程中,形成了基于知識的強化學(xué)習(xí)理論,它的誕生也進一步驗證了先驗知識在演化算法中應(yīng)用的有效性,這為通過先驗知識提高智能制造工業(yè)檢測效果提供了一個重要方向。

5 結(jié)語

隨著計算機視覺在智能制造領(lǐng)域的深入,它涉及的應(yīng)用將更多更廣,發(fā)揮的作用也越來越大。從理論到應(yīng)用的這一過程中遇到了很多瓶頸問題,如何克服這些難點以及探索更實用的解決方案將是下一階段需要著重開展的研究工作。 目前針對3個瓶頸問題的研究方法眾多,可從如下思路進一步研究:

1) 針對計算機視覺應(yīng)用易受光照影響的問題,可設(shè)計黑箱式封裝的圖像采集設(shè)備,排除外界光照干擾,安裝在工業(yè)生產(chǎn)線上,從而達(dá)到實驗室級別的檢測環(huán)境,從根本上解決光照影響問題。

2) 針對計算機視覺應(yīng)用中樣本數(shù)據(jù)難以支持深度學(xué)習(xí)的問題,可通過小樣本和不平衡樣本處理方法在不降低樣本數(shù)據(jù)質(zhì)量的同時增大樣本數(shù)據(jù)量,并且結(jié)合傳統(tǒng)方法如模板匹配和相似度檢測來輔助增加檢測準(zhǔn)確率。

3) 針對計算機視覺應(yīng)用中先驗知識難以加入演化算法的問題,除了從訓(xùn)練和預(yù)測階段入手,在決策的判斷上也可做基于先驗知識的判定。如在合格率較高的零件檢測中,一些不常見的錯誤判定可以根據(jù)先驗知識修改為正確判定,從而提高準(zhǔn)確率。

編輯:jq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 機器視覺
    +關(guān)注

    關(guān)注

    163

    文章

    4518

    瀏覽量

    122439

原文標(biāo)題:全面解析機器視覺在工業(yè)檢測中應(yīng)用瓶頸

文章出處:【微信號:vision263com,微信公眾號:新機器視覺】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦
    熱點推薦

    高光譜相機工業(yè)檢測的應(yīng)用:LED屏檢、PCB板缺陷檢測

    和VIX系列推掃式高光譜相機的技術(shù)特點與實際應(yīng)用案例,解析其工業(yè)檢測的核心價值。 一、高光譜相機檢測原理:從“成像”到“物質(zhì)識別” 傳統(tǒng)
    的頭像 發(fā)表于 04-23 16:36 ?287次閱讀

    24位或者說高分辨率的AD到底有什么用

    的AD,如24位的AD,其分辨率達(dá)到很低的uV級別,我們?nèi)绾慰季科渚龋慷褹D的精度受到諸多因素的影響,其中參考源的穩(wěn)定度和供電電源的穩(wěn)定度對精度影響很大,參考源最低0.05%的精度,那么24位的分辨率所可以達(dá)到的精度卻是要大打折扣的,請問在這樣的情況下,24位或者說高分辨率的AD到底有什么用
    發(fā)表于 01-07 06:49

    差分輸入和和單端輸入本質(zhì)上到底有什么區(qū)別?

    和和單端輸入本質(zhì) 上到底有什么區(qū)別? 因為,ADC采集的信號說到底是AINP - AINN,不管單端還是差分,采集的信號都是這兩個pad的差值。 2:將單端信號接在ADC的差分輸入接口上可以用
    發(fā)表于 12-23 07:31

    功率放大器機器視覺下液滴操控與熒光分析檢測的應(yīng)用

    實驗名稱:功率放大器機器視覺輔助下超疏水表面無接觸液滴操控與熒光分析檢測的應(yīng)用實驗內(nèi)容:
    的頭像 發(fā)表于 10-29 17:54 ?976次閱讀
    功率放大器<b class='flag-5'>在</b><b class='flag-5'>機器</b><b class='flag-5'>視覺</b>下液滴操控與熒光分析<b class='flag-5'>檢測</b><b class='flag-5'>中</b>的應(yīng)用

    RTOS與Linux到底有什么區(qū)別

    很多做嵌入式開發(fā)的小伙伴都存在這樣的疑惑:RTOS與Linux到底有什么區(qū)別?
    的頭像 發(fā)表于 10-29 09:53 ?1152次閱讀

    光源---助力工業(yè)相機視覺檢測的應(yīng)用

    工業(yè)光源可提高圖像質(zhì)量,視覺檢測事半功倍,光學(xué)類型比較多,根據(jù)不同的場景,選擇合適的光源,提高檢測
    發(fā)表于 10-18 16:38 ?0次下載

    工業(yè)主板服裝紡織瑕疵檢測的應(yīng)用

    工業(yè)主板服裝紡織瑕疵檢測的應(yīng)用主要體現(xiàn)在其作為智能化、自動化檢測系統(tǒng)的核心部件,通過集成先進的機器
    的頭像 發(fā)表于 09-18 17:26 ?601次閱讀
    <b class='flag-5'>工業(yè)</b>主板<b class='flag-5'>在</b>服裝紡織瑕疵<b class='flag-5'>檢測</b><b class='flag-5'>中</b>的應(yīng)用

    CMOS運放的輸入阻抗到底有多高

    都說CMOS運放輸入阻抗高,到底有多高?可有一個量化指標(biāo)?
    發(fā)表于 09-06 06:59

    視覺檢測可以食品檢測出毛發(fā)嗎

    食品生產(chǎn)過程,確保產(chǎn)品無異物是質(zhì)量控制的重要環(huán)節(jié)。尤其是食品的毛發(fā),不僅影響產(chǎn)品的外觀質(zhì)量,還可能對消費者的健康造成威脅。隨著科技的不斷進步,視覺
    的頭像 發(fā)表于 09-02 13:54 ?544次閱讀

    視覺檢測是什么意思?機器視覺檢測的適用行業(yè)及場景哪些?

    快速迭代的工業(yè)世界機器視覺檢測以其精準(zhǔn)、高效的力量,已成為眾多產(chǎn)業(yè)不可或缺的技術(shù)支持。本文
    的頭像 發(fā)表于 08-30 11:20 ?827次閱讀

    機器視覺焊接質(zhì)量檢測的應(yīng)用

    的可能性。今天跟隨創(chuàng)想智控小編一起了解機器視覺焊接質(zhì)量檢測的應(yīng)用。 1. 機器
    的頭像 發(fā)表于 08-13 16:33 ?577次閱讀

    機器視覺嵌入式的應(yīng)用

    機器視覺嵌入式系統(tǒng)的應(yīng)用是一個廣泛而深入的話題,涉及到許多不同的領(lǐng)域和技術(shù)。 機器視覺
    的頭像 發(fā)表于 07-16 10:30 ?916次閱讀

    機器視覺的四大類應(yīng)用是什么?

    自動化是機器視覺應(yīng)用最為廣泛的領(lǐng)域之一。制造業(yè)機器視覺技術(shù)可以提高生產(chǎn)效率、降低成本、保證
    的頭像 發(fā)表于 07-16 10:17 ?2436次閱讀

    深度學(xué)習(xí)工業(yè)機器視覺檢測的應(yīng)用

    隨著深度學(xué)習(xí)技術(shù)的快速發(fā)展,其工業(yè)機器視覺檢測的應(yīng)用日益廣泛,并展現(xiàn)出巨大的潛力。
    的頭像 發(fā)表于 07-08 10:40 ?1872次閱讀

    機器視覺光源的種類及作用

    機器視覺是一種利用計算機和圖像處理技術(shù)來模擬人類視覺系統(tǒng)的方法,它在工業(yè)自動化、醫(yī)療診斷、智能交通等領(lǐng)域得到了廣泛的應(yīng)用。光源作為機器
    的頭像 發(fā)表于 07-04 10:23 ?1808次閱讀
    主站蜘蛛池模板: 天天色天天操天天射 | 欧洲精品不卡1卡2卡三卡四卡 | 国模大胆一区二区三区 | 四虎在线免费播放 | 亚洲成a人片在线网站 | 一区视频在线播放 | 婷婷综合影院 | 无限国产资源 | 国产成人精品怡红院 | 国产一级毛片外aaaa | 悠悠影院欧美日韩国产 | 色噜噜色偷偷 | 成人免费无毒在线观看网站 | 亚洲毛片免费在线观看 | 四虎永久免费网站入口2020 | 免费高清视频在线观看 | 九九99视频在线观看视频观看 | 扒开双腿猛进湿润18p | 久久久精品午夜免费不卡 | 在线网站你懂得 | 国产一区二区三区影院 | 日韩不卡毛片 | 五月六月伊人狠狠丁香网 | 黄色国产精品 | 在线国产高清 | 国产精品久久久久免费 | 看免费视频 | 中文三 级 黄 色 片 | 国产三级日本三级韩国三级在线观看 | 综合色影院 | 狠婷婷| 色偷偷亚洲 | 1314亚洲人成网站在线观看 | 久久婷婷综合中文字幕 | 99精品热| www婷婷| 免费的很黄很色的床小视频 | 国产午夜在线观看视频播放 | 天堂中文在线www | 日韩美女影院 | 嫩草影院www |