在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

研究人員研制出可實現心肌細胞的實時動態力成像的壓電光電子學納米“天線”陣列

微流控 ? 來源:北京納米能源所 ? 作者:北京納米能源所 ? 2021-06-09 11:33 ? 次閱讀

細胞在運動、遷移、收縮、舒張和拉伸的過程中都會產生細胞牽引力(cell traction force, CTF)。這些力極其微小,但是它們卻有著深刻的生物學影響,與生化信號一起協同有序地調控生命過程,在細胞增殖、分化、凋亡、腫瘤發生轉移、傷口愈合以及胚胎發育中發揮關鍵作用。因此,了解細胞牽引力是如何影響細胞功能,不同狀態下的細胞會產生多大的細胞牽引力,都對細胞生物學的研究十分重要。

近日,中科院北京納米能源與系統研究所、北京航空航天大學生物醫學工程高精尖創新中心、中國科學院大學和廣西大學的研究團隊共同研制出可實現心肌細胞的實時動態力成像的壓電光電子學納米“天線”陣列(Piezo-phototronic Light Nano-Antenna, PLNA),相關研究成果發表在最新一期(2021年5月26日)國際學術期刊Science Advances上。鄭強博士、彭銘曾博士和劉卓博士為共同第一作者,李舟研究員,翟俊宜研究員和王中林院士為共同通訊作者。

該研究團隊一直聚焦細胞牽引力的精確測量方法和器件研究。早在2009年,李舟和王中林就提出基于硅納米線陣列測量細胞牽引力的方法,研究了正常細胞、良性和惡性腫瘤細胞的最大細胞牽引力的差異(Nano Letter, 2009, 9, 10:3575-3580)(圖1)。通過利用掃描電子顯微鏡(SEM)獲取硅納米線陣列上由細胞引起的彎曲情況,結合納米線的物理性能參數和位移數據進行統計分析,能夠準確獲得施加在納米線上的細胞牽引力的大小。該工作是無機納米線陣列在細胞牽引力研究中的新嘗試,結合正常細胞和腫瘤細胞的細胞牽引力分析,對研究疾病的發生和發展過程提供了新的研究方法和技術手段。

f39674f2-c48e-11eb-9e57-12bb97331649.png

圖1 硅納米線陣列量化細胞牽引力

2018年,基于細胞外基質(Extracellular matrix, ECM)對細胞牽引力的重要的影響,該研究團隊通過優化硅納米線陣列的參數與性能,探究細胞外基質對細胞牽引力的調控機理,并以MC-3T3成骨細胞為載體,系統研究了在亞微米空間分辨下細胞外基質調控成骨細胞牽引力的動態時序過程(Nano Energy, 2018, 50: 504-512)(圖2)。該研究為理解細胞牽引力的動態時序變化過程以及ECM修飾的組織工程支架的構建提供了重要理論支撐。

f3aeed0c-c48e-11eb-9e57-12bb97331649.png

圖2 細胞外基質對細胞牽引力的調控機理探究

在上述兩個研究工作中,硅納米線陣列在量化細胞牽引力及其調控機理方面取得了較好的進展,但是由于硅材料不透光,只能將細胞固定脫水后觀察,這樣就難以通過光學顯微鏡實時高分辨的觀察細胞的動態變化過程。因此,實時、動態、快速、高分辨的活細胞牽引力測量成為下一步的研究目標。那么如何逐步實現這一目標呢?從2010年起,李舟和王中林就萌生了直接觀察細胞爬行力的分布圖的想法。

壓電光電子學效應的提出為這項研究的推進提供了新思路和新方法。這一效應是由2010年王中林院士提出,其利用在壓電半導體材料中施加應變所產生的壓電電勢來控制載流子在金屬-半導體接觸或者PN結處的產生、傳輸、分離或者復合,從而調控光電器件的光學性能。

2015年,該研究團隊基于壓電光電子學效應,首先構建了InGaN/GaN多量子阱的納米線陣列(直徑0.8 μm,高度1.2 μm,間距4 μm,分辨率為6350 dpi)。這種材料的使用首先解決了傳統硅基材料不透光的問題,并且InGaN/GaN多量子阱的納米線陣列在405 nm波長的激光激發下能夠發光,發射波長為460nm。在壓力/應變下產生的壓電電荷成功調制了InGaN/GaN多量子阱的光致發光(Photoluminescence, PL)強度(圖3)(ACS nano, 2015, 9, 3: 3143-3150)。

f3e496aa-c48e-11eb-9e57-12bb97331649.png

圖3 壓電光電子學理論導圖以及壓力/應變誘導產生壓電電荷成功調制InGaN/GaN多量子阱的光致發光(Photoluminescence, PL)強度裝置示意圖

從硅納米線到壓電光電子學InGaN/GaN多量子阱納米線,在材料本身獲得改進的基礎上,面向細胞牽引力的測量,其性能的提升至關重要。在本研究中,研究團隊根據細胞牽引力的大小,結合材料的楊氏模量等數據,優化并改良工藝參數,以透光的藍寶石為襯底,進一步減小InGaN/GaN多量子阱的納米線的直徑,提高長徑比,優化納米線陣列的單位密度,使之更加適配細胞牽引力的作用。最終制備的InGaN/GaN多量子阱的納米線直徑、高度和陣列間距分別為150 nm,1500 nm和800 nm(圖4),空間分辨率達到31750 dpi,相較之前的器件,分辨率和性能都有大幅提升。

f417d614-c48e-11eb-9e57-12bb97331649.png

圖4 InGaN/GaN多量子阱的納米線形貌

為了探究該納米線陣列是否可以實時動態的實現力成像,研究人員使用可自主收縮的心肌細胞為細胞牽引力的研究對象,通過心肌細胞的收縮和舒張運動,將細胞牽引力施加到細胞下部的壓電光電子學納米“天線”陣列上,其產生的正負壓電電荷調制量子阱光致發光強度。通過激光共聚焦顯微鏡(confocal microscopy)對自主收縮的心肌細胞及其下部發光的納米“天線”陣列進行動態成像,時間分辨率約333 ms,并建立細胞牽引力與光致發光強度變化的實時對應關系(圖5),對細胞牽引力的測量范圍可達0.17 μN-10 μN,檢測靈敏度為15 nN/nm,同時具有良好的光學穩定性(抗光漂白)和重復性。

f428f5a2-c48e-11eb-9e57-12bb97331649.png

圖5 通過InGaN/GaN多量子阱的納米線構建細胞力與光致發光強度變化關系以及強度時閾變化圖

該研究是首次基于壓電光電子學效應提出一種超高空間分辨率實時測量細胞力分布的方法,是壓電光電子學效應的又一獨特的應用,并進一步證明了納米線陣列在亞微米尺度上測量細胞牽引力的優異特性。該研究歷時11年:從最初的固定脫水靜態細胞分析到如今的實時動態活細胞分析;從硅基不透光材料到透明藍寶石基底InGaN/GaN材料,簡化了觀測方法從掃描電子顯微鏡觀察到激光共聚焦光學顯微鏡觀察;從細胞周圍納米線的局部量化到細胞胞體覆蓋的全域量化;從納米線位移來測量細胞牽引力到壓電光電子學InGaN/GaN多量子阱納米線光強變化實時反饋細胞牽引力。該團隊厚積薄發,“十年磨一劍”,逐步實現了實時、快速、動態、高分辨的細胞牽引力成像這一目標。它不但是生物工程探索中的一個重大進展,也是壓電光電子學效應在醫學中的一個嶄新應用。與此同時,心肌細胞牽引力的動態精確測量,為心血管疾病相關的臨床研究提供新的研究方法和平臺,將深化對心肌細胞的生物力學特性以及心肌細胞之間、心肌細胞與胞外基質相互作用的理解,對疾病檢測、藥物篩選、組織工程和再生醫學研究產生重要價值。

該工作得到北京航空航天大學樊瑜波教授、李淑宇教授、歐陽涵博士,中國科學院遺傳與發育生物學研究所韓榮成副研究員,北京納米能源與系統研究所潘曹峰研究員、胡衛國研究員的大力合作與幫助。研究工作得到科技部納米專項、國家自然科學基金、北京市自然科學基金,中央高校基礎研究基金、國家青年人才項目和中國博士后科學基金等項目資助。

責任編輯:lq

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 納米
    +關注

    關注

    2

    文章

    699

    瀏覽量

    37172
  • 半導體材料
    +關注

    關注

    11

    文章

    558

    瀏覽量

    29678
  • 陣列
    +關注

    關注

    0

    文章

    60

    瀏覽量

    16888

原文標題:研究人員首次利用納米“天線”,實現心肌細胞實時動態力成像

文章出處:【微信號:Micro-Fluidics,微信公眾號:微流控】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    壓電納米運動技術在“超級顯微鏡”中的應用

    壓電納米運動技術可以在納米尺度下實現高精度的運動控制。在光學顯微鏡應用中,壓電納米運動器件可以進行樣品控制、掃描、光束對準和自動聚焦等操作,大幅提高顯微鏡的分辨率和精度,從而
    的頭像 發表于 01-02 10:06 ?164次閱讀
    <b class='flag-5'>壓電納米</b>運動技術在“超級顯微鏡”中的應用

    推進光電子集成芯片封裝技術

    原創 逍遙科技 逍遙設計自動化 引言 過去十年,光電子集成芯片技術取得顯著進展,應用范圍已從傳統的收發器擴展到光計算、生物醫學傳感、光互連和消費電子等多個領域。隨著人工智能和機器學習硬件對光
    的頭像 發表于 12-11 10:34 ?323次閱讀
    推進<b class='flag-5'>光電子</b>集成芯片封裝技術

    電子束光刻技術實現納米結構特征的精細控制

    電子束光刻技術使得對構成多種納米技術基礎的納米結構特征實現精細控制成為可能。納米結構制造與測量的研究人員
    的頭像 發表于 10-18 15:23 ?451次閱讀
    <b class='flag-5'>電子</b>束光刻技術<b class='flag-5'>實現</b>對<b class='flag-5'>納米</b>結構特征的精細控制

    研究人員利用人工智能提升超透鏡相機的圖像質量

    研究人員利用深度學習技術提高了直接集成在 CMOS 成像芯片上的超透鏡相機(左)的圖像質量。超透鏡利用 1000 納米高的圓柱形氮化硅納米陣列
    的頭像 發表于 06-11 06:34 ?429次閱讀
    <b class='flag-5'>研究人員</b>利用人工智能提升超透鏡相機的圖像質量

    恒元光電成功研制出12英寸(直徑300mm)光學級鈮酸鋰晶體

    據麥姆斯咨詢報道,近日,山東恒元半導體科技有限公司(以下簡稱“恒元光電”)在濟南市“揭榜掛帥”科技計劃項目的支持下,成功研制出12英寸(直徑300mm)光學級鈮酸鋰晶體。
    的頭像 發表于 05-17 09:28 ?1195次閱讀

    基于納米壓印超構透鏡陣列的增強現實方案

    研究人員基于超薄納米壓印超構透鏡陣列開發出一種透視增強現實(AR)原型,開創了一種全彩、視頻速率和低成本的3D近眼顯示方案。
    的頭像 發表于 05-15 09:09 ?1528次閱讀
    基于<b class='flag-5'>納米</b>壓印超構透鏡<b class='flag-5'>陣列</b>的增強現實方案

    斯坦福大學研發全新AI輔助全息成像技術

    據最新消息,斯坦福大學的研究人員成功研制出全新AI輔助全息成像技術,其薄度、重量及質量均超過了當前方案,有望推動增強現實(AR)眼鏡領域的發展。
    的頭像 發表于 05-10 14:48 ?639次閱讀

    基于壓電效應的光電子集成技術研究進展綜述

    壓電效應是一種實現電能與機械能之間相互轉換的重要物理現象。隨著集成光電子技術和壓電薄膜材料制備技術的日益成熟,壓電效應在
    的頭像 發表于 04-17 09:10 ?1142次閱讀
    基于<b class='flag-5'>壓電</b>效應的<b class='flag-5'>光電子</b>集成技術<b class='flag-5'>研究</b>進展綜述

    硅基光電子工藝中集成鍺探測器的工藝挑戰與解決方法簡介

    鍺(Ge)探測器是硅基光電子芯片中實現光電信號轉化的核心器件。在硅基光電子芯片工藝中實現異質單片集成高性能Ge探測器工藝,是光模塊等硅基
    的頭像 發表于 04-07 09:16 ?1160次閱讀
    硅基<b class='flag-5'>光電子</b>工藝中集成鍺探測器的工藝挑戰與解決方法簡介

    百萬像素膠體量子點中波紅外焦平面陣列成像技術研究

    據麥姆斯咨詢報道,2024年年初,北京理工大學紅外膠體量子點團隊在《激光與光電子學進展》期刊發表了題為“百萬像素膠體量子點中波紅外焦平面陣列成像技術”的特邀研究論文。
    的頭像 發表于 03-21 09:21 ?985次閱讀
    百萬像素膠體量子點中波紅外焦平面<b class='flag-5'>陣列成像</b>技術<b class='flag-5'>研究</b>

    光電子集成芯片是什么

    光電子集成芯片是一種由光電子器件、微電子器件以及微機械器件等多種元器件所組合而成的芯片。它主要依靠半導體制造技術,將電子、光子、熱子等不同形式的信息處理器件集成到一起。這種芯片具有高速
    的頭像 發表于 03-19 18:23 ?1651次閱讀

    半導體所研制出室溫連續功率4.6W的GaN基大功率紫外激光器

    氮化鎵(GaN)基材料被稱為第三代半導體,其光譜范圍覆蓋了近紅外、可見光和紫外全波段,在光電子學領域有重要的應用價值。
    的頭像 發表于 03-08 10:32 ?1062次閱讀
    半導體所<b class='flag-5'>研制出</b>室溫連續功率4.6W的GaN基大功率紫外激光器

    更快、更高效的納米粒子成像系統

    研究人員開發了一種新的納米粒子成像系統。該系統由一種高精度、短波紅外成像技術組成,能夠捕捉微毫秒范圍內稀土摻雜納米粒子的光致發光壽命。 這一
    的頭像 發表于 03-04 06:38 ?421次閱讀

    寬帶放大器在CMUT陣列的超聲反射成像研究中的應用

      實驗名稱:CMUT陣列的超聲反射成像研究   實驗原理:超聲斷層成像技術是通過物體外檢測到的超聲數據對被測物進行內部結構重構的技術。超聲CT技術最初借鑒了X-CT技術的相關理論及
    發表于 02-28 16:01

    美國研究人員使用干細胞制作芯片心臟,助力藥物安全性評估

    此項研究團隊先從人類胚胎中提取誘導多能干細胞,轉化成心肌細胞和血管細胞,再注入到特定設計的三維芯片內部。這類芯片內設有互相交錯的通道,具備單獨分離及相互作用的能力,同時還可進行液體導入
    的頭像 發表于 02-18 16:45 ?883次閱讀
    主站蜘蛛池模板: 色播五月婷婷 | 狠狠色噜噜狠狠狠狠五月婷 | 午夜精品久久久久久久2023 | 天天插日日插 | 中国一级毛片aaa片 中国一级特黄aa毛片大片 | 伊人久久大香线蕉综合网站 | 大尺度视频在线观看 | 四虎国产精品永久地址49 | 日操夜干| 一卡二卡≡卡四卡亚洲高清 | 日韩免费一级毛片 | 粉嫩尤物在线456 | 欧美人与zoxxxx | 日本不卡一区二区三区在线观看 | 国产色网址 | 成人久久久精品乱码一区二区三区 | 美女脱裤子屁屁视频 | 女人张开腿 让男人桶视频 女人张开腿等男人桶免费视频 | 精品午夜视频 | 国漫在线观看 | 亚洲精品亚洲人成人网 | 日本在线视 | 亚洲免费视频观看 | 三级网站在线看 | 亚洲aⅴ久久久噜噜噜噜 | 你懂得国产 | 视频在线视频免费观看 | 亚洲 另类 在线 欧美 制服 | 国产成人精品视频一区二区不卡 | 一级视频片 | 免费视频淫片aa毛片 | 黄色大片免费观看 | 天堂网站www天堂资源在线 | 天天爽天天 | zzji国产精品视频 | 四虎影院永久免费观看 | 奇米四色7777 | 色综合中文字幕 | 久久婷婷六月 | 在线激情网| vr性资源在线观看 |