91在线观看视频-91在线观看视频-91在线观看免费视频-91在线观看免费-欧美第二页-欧美第1页

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

常用的feature scaling方法都有哪些?

新機器視覺 ? 來源:CSDN ? 作者:hine-lee ? 2022-08-02 11:45 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

寫在前面

Feature scaling,常見的提法有“特征歸一化”、“標準化”,是數據預處理中的重要技術,有時甚至決定了算法能不能work以及work得好不好。談到feature scaling的必要性,最常用的2個例子可能是:

特征間的單位(尺度)可能不同,比如身高和體重,比如攝氏度和華氏度,比如房屋面積和房間數,一個特征的變化范圍可能是[1000, 10000],另一個特征的變化范圍可能是[?0.1,0.2],在進行距離有關的計算時,單位的不同會導致計算結果的不同,尺度大的特征會起決定性作用,而尺度小的特征其作用可能會被忽略,為了消除特征間單位和尺度差異的影響,以對每維特征同等看待,需要對特征進行歸一化。

原始特征下,因尺度差異,其損失函數的等高線圖可能是橢圓形,梯度方向垂直于等高線,下降會走zigzag路線,而不是指向local minimum。通過對特征進行zero-mean and unit-variance變換后,其損失函數的等高線圖更接近圓形,梯度下降的方向震蕩更小,收斂更快,如下圖所示,圖片來自Andrew Ng。

2e5c1b5a-11a0-11ed-ba43-dac502259ad0.png

Feature Scaling from Andrew Ng 對于feature scaling中最常使用的Standardization,似乎“無腦上”就行了,本文想多探究一些為什么,

常用的feature scaling方法都有哪些?

什么情況下該使用什么feature scaling方法?有沒有一些指導思想?

所有的機器學習算法都需要feature scaling嗎?有沒有例外?

損失函數的等高線圖都是橢圓或同心圓嗎?能用橢圓和圓來簡單解釋feature scaling的作用嗎?

如果損失函數的等高線圖很復雜,feature scaling還有其他直觀解釋嗎?

根據查閱到的資料,本文將嘗試回答上面的問題。但筆者能力有限,空有困惑,能講到哪算哪吧(微笑)。

常用feature scaling方法

在問為什么前,先看是什么。 給定數據集,令特征向量為x,維數為D,樣本數量為R,可構成D×R的矩陣,一列為一個樣本,一行為一維特征,如下圖所示,圖片來自Hung-yi Lee pdf-Gradient Descent:

2e764034-11a0-11ed-ba43-dac502259ad0.png

feature matrix feature scaling的方法可以分成2類,逐行進行和逐列進行。逐行是對每一維特征操作,逐列是對每個樣本操作,上圖為逐行操作中特征標準化的示例。 具體地,常用feature scaling方法如下,來自wiki,

Rescaling (min-max normalization、range scaling):

2e886872-11a0-11ed-ba43-dac502259ad0.png

將每一維特征線性映射到目標范圍[a,b],即將最小值映射為a,最大值映射為b,常用目標范圍為[0,1]和[?1,1],特別地,映射到[0,1]計算方式為:

2ea37086-11a0-11ed-ba43-dac502259ad0.png

Mean normalization:

2eadd44a-11a0-11ed-ba43-dac502259ad0.png

將均值映射為0,同時用最大值最小值的差對特征進行歸一化,一種更常見的做法是用標準差進行歸一化,如下。

Standardization (Z-score Normalization):

2eba3780-11a0-11ed-ba43-dac502259ad0.png 每維特征0均值1方差(zero-mean and unit-variance)。

Scaling to unit length:

2ec2efce-11a0-11ed-ba43-dac502259ad0.png 將每個樣本的特征向量除以其長度,即對樣本特征向量的長度進行歸一化,長度的度量常使用的是L2 norm(歐氏距離),有時也會采用L1 norm,不同度量方式的一種對比可以參見論文“CVPR2005-Histograms of Oriented Gradients for Human Detection”。 上述4種feature scaling方式,前3種為逐行操作,最后1種為逐列操作。容易讓人困惑的一點是指代混淆,Standardization指代比較清晰,但是單說Normalization有時會指代min-max normalization,有時會指代Standardization,有時會指代Scaling to unit length。

計算方式上對比分析

前3種feature scaling的計算方式為減一個統計量再除以一個統計量,最后1種為除以向量自身的長度。

減一個統計量可以看成選哪個值作為原點,是最小值還是均值,并將整個數據集平移到這個新的原點位置。如果特征間偏置不同對后續過程有負面影響,則該操作是有益的,可以看成是某種偏置無關操作;如果原始特征值有特殊意義,比如稀疏性,該操作可能會破壞其稀疏性。

除以一個統計量可以看成在坐標軸方向上對特征進行縮放,用于降低特征尺度的影響,可以看成是某種尺度無關操作。縮放可以使用最大值最小值間的跨度,也可以使用標準差(到中心點的平均距離),前者對outliers敏感,outliers對后者影響與outliers數量和數據集大小有關,outliers越少數據集越大影響越小。

除以長度相當于把長度歸一化,把所有樣本映射到單位球上,可以看成是某種長度無關操作,比如,詞頻特征要移除文章長度的影響,圖像處理中某些特征要移除光照強度的影響,以及方便計算余弦距離或內積相似度等。

稀疏數據、outliers相關的更多數據預處理內容可以參見scikit learn-5.3. Preprocessing data。 從幾何上觀察上述方法的作用,圖片來自CS231n-Neural Networks Part 2: Setting up the Data and the Loss,zero-mean將數據集平移到原點,unit-variance使每維特征上的跨度相當,圖中可以明顯看出兩維特征間存在線性相關性,Standardization操作并沒有消除這種相關性。

2ed3030a-11a0-11ed-ba43-dac502259ad0.png

Standardization 可通過PCA方法移除線性相關性(decorrelation),即引入旋轉,找到新的坐標軸方向,在新坐標軸方向上用“標準差”進行縮放,如下圖所示,圖片來自鏈接,圖中同時描述了unit length的作用——將所有樣本映射到單位球上。

2ee9c7b6-11a0-11ed-ba43-dac502259ad0.png

Effect of the operations of standardization and length normalization 當特征維數更多時,對比如下,圖片來自youtube,

2ef7df40-11a0-11ed-ba43-dac502259ad0.png

feature scaling comparison 總的來說,歸一化/標準化的目的是為了獲得某種“無關性”——偏置無關、尺度無關、長度無關……當歸一化/標準化方法背后的物理意義和幾何含義與當前問題的需要相契合時,其對解決該問題就有正向作用,反之,就會起反作用。所以,“何時選擇何種方法”取決于待解決的問題,即problem-dependent。

feature scaling 需要還是不需要

下圖來自data school-Comparing supervised learning algorithms,對比了幾個監督學習算法,最右側兩列為是否需要feature scaling。

2f1395dc-11a0-11ed-ba43-dac502259ad0.png

Comparing supervised learning algorithms 下面具體分析一下。

什么時候需要feature scaling?

涉及或隱含距離計算的算法,比如K-means、KNN、PCA、SVM等,一般需要feature scaling,因為:

zero-mean一般可以增加樣本間余弦距離或者內積結果的差異,區分力更強,假設數據集集中分布在第一象限遙遠的右上角,將其平移到原點處,可以想象樣本間余弦距離的差異被放大了。在模版匹配中,zero-mean可以明顯提高響應結果的區分度。 就歐式距離而言,增大某個特征的尺度,相當于增加了其在距離計算中的權重,如果有明確的先驗知識表明某個特征很重要,那么適當增加其權重可能有正向效果,但如果沒有這樣的先驗,或者目的就是想知道哪些特征更重要,那么就需要先feature scaling,對各維特征等而視之。 增大尺度的同時也增大了該特征維度上的方差,PCA算法傾向于關注方差較大的特征所在的坐標軸方向,其他特征可能會被忽視,因此,在PCA前做Standardization效果可能更好,如下圖所示,圖片來自scikit learn-Importance of Feature Scaling,

2f28b3cc-11a0-11ed-ba43-dac502259ad0.png

PCA and Standardization

損失函數中含有正則項時,一般需要feature scaling:對于線性模型y=wx+b而言,x的任何線性變換(平移、放縮),都可以被w和b“吸收”掉,理論上,不會影響模型的擬合能力。但是,如果損失函數中含有正則項,如λ∣∣w∣∣^2,λ為超參數,其對w的每一個參數施加同樣的懲罰,但對于某一維特征xi而言,其scale越大,系數wi越小,其在正則項中的比重就會變小,相當于對wi懲罰變小,即損失函數會相對忽視那些scale增大的特征,這并不合理,所以需要feature scaling,使損失函數平等看待每一維特征。

梯度下降算法,需要feature scaling。梯度下降的參數更新公式如下,

2f341d20-11a0-11ed-ba43-dac502259ad0.png

E(W)為損失函數,收斂速度取決于:參數的初始位置到local minima的距離,以及學習率η的大小。一維情況下,在local minima附近,不同學習率對梯度下降的影響如下圖所示:

2f4546f4-11a0-11ed-ba43-dac502259ad0.png

Gradient descent for different learning rates 多維情況下可以分解成多個上圖,每個維度上分別下降,參數W為向量,但學習率只有1個,即所有參數維度共用同一個學習率(暫不考慮為每個維度都分配單獨學習率的算法)。收斂意味著在每個參數維度上都取得極小值,每個參數維度上的偏導數都為0,但是每個參數維度上的下降速度是不同的,為了每個維度上都能收斂,學習率應取所有維度在當前位置合適步長中最小的那個。下面討論feature scaling對gradient descent的作用,

2f4f67f6-11a0-11ed-ba43-dac502259ad0.png

不同方向上的下降速度變化不同(二階導不同,曲率不同),恰由輸入的協方差矩陣決定,通過scaling改變了損失函數的形狀,減小不同方向上的曲率差異。將每個維度上的下降分解來看,給定一個下降步長,如果不夠小,有的維度下降的多,有的下降的少,有的還可能在上升,損失函數的整體表現可能是上升也可能是下降,就會不穩定。scaling后不同方向上的曲率相對更接近,更容易選擇到合適的學習率,使下降過程相對更穩定。

zero center與參數初始化相配合,縮短初始參數位置與local minimum間的距離,加快收斂。模型的最終參數是未知的,所以一般隨機初始化,比如從0均值的均勻分布或高斯分布中采樣得到,對線性模型而言,其分界面初始位置大致在原點附近,bias經常初始化為0,則分界面直接通過原點。同時,為了收斂,學習率不會很大。而每個數據集的特征分布是不一樣的,如果其分布集中且距離原點較遠,比如位于第一象限遙遠的右上角,分界面可能需要花費很多步驟才能“爬到”數據集所在的位置。所以,無論什么數據集,先平移到原點,再配合參數初始化,可以保證分界面一定會穿過數據集。此外,outliers常分布在數據集的外圍,與分界面從外部向內挪動相比,從中心區域開始挪動可能受outliers的影響更小。

對于采用均方誤差損失LMS的線性模型,損失函數恰為二階,如下圖所示

另有從Hessian矩陣特征值以及condition number角度的理解,詳見Lecun paper-Efficient BackProp中的Convergence of Gradient Descent一節,有清晰的數學描述,同時還介紹了白化的作用——解除特征間的線性相關性,使每個維度上的梯度下降可獨立看待。

文章開篇的橢圓形和圓形等高線圖,僅在采用均方誤差的線性模型上適用,其他損失函數或更復雜的模型,如深度神經網絡,損失函數的error surface可能很復雜,并不能簡單地用橢圓和圓來刻畫,所以用它來解釋feature scaling對所有損失函數的梯度下降的作用,似乎過于簡化,見Hinton vedio-3.2 The error surface for a linear neuron。

對于損失函數不是均方誤差的情況,只要權重w與輸入特征x間是相乘關系,損失函數對w的偏導必然含有因子x,w的梯度下降速度就會受到特征x尺度的影響。理論上為每個參數都設置上自適應的學習率,可以吸收掉x尺度的影響,但在實踐中出于計算量的考慮,往往還是所有參數共用一個學習率,此時x尺度不同可能會導致不同方向上的下降速度懸殊較大,學習率不容易選擇,下降過程也可能不穩定,通過scaling可對不同方向上的下降速度有所控制,使下降過程相對更穩定。

對于傳統的神經網絡,對輸入做feature scaling也很重要,因為采用sigmoid等有飽和區的激活函數,如果輸入分布范圍很廣,參數初始化時沒有適配好,很容易直接陷入飽和區,導致梯度消失,所以,需要對輸入做Standardization或映射到[0,1]、[?1,1],配合精心設計的參數初始化方法,對值域進行控制。但自從有了Batch Normalization,每次線性變換改變特征分布后,都會重新進行Normalization,似乎可以不太需要對網絡的輸入進行feature scaling了?但習慣上還是會做feature scaling。

什么時候不需要Feature Scaling?

與距離計算無關的概率模型,不需要feature scaling,比如Naive Bayes; 與距離計算無關的基于樹的模型,不需要feature scaling,比如決策樹、隨機森林等,樹中節點的選擇只關注當前特征在哪里切分對分類更好,即只在意特征內部的相對大小,而與特征間的相對大小無關。

小結

這篇文章寫得十分艱難,一開始以為蠻簡單直接,但隨著探索的深入,冒出的問號越來越多,打破了很多原來的“理所當然”,所以,在寫的過程中不停地做加法,很多地方想解釋得盡量直觀,又不想照搬太多公式,但自己的理解又不夠深刻,導致現在敘述這么冗長,希望以后在寫文時能更專注更精煉。

審核編輯 :李倩

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 算法
    +關注

    關注

    23

    文章

    4710

    瀏覽量

    95411
  • 函數
    +關注

    關注

    3

    文章

    4381

    瀏覽量

    64911

原文標題:小結

文章出處:【微信號:vision263com,微信公眾號:新機器視覺】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    常用電器控制電路精選

    本文共精選了200多個電路,涉及電工技術的各個領域。全書共分為五大部分:電動機保護、能耗制動及水位控制電路,電動機和發電機啟動、驅動及調速控制電路,農村電工制作及實用電路,常用工業設備、日用
    發表于 05-14 16:59

    Android Studio Ladybug Feature Drop版本的新功能

    Android Studio Ladybug Feature Drop (2024.2.2) 穩定版已推出!
    的頭像 發表于 03-03 16:13 ?521次閱讀
    Android Studio Ladybug <b class='flag-5'>Feature</b> Drop版本的新功能

    電源浪涌測試方法

    電源浪涌測試是評估電氣設備在電源浪涌條件下的性能表現的重要手段。以下是電源浪涌測試的一些常用方法
    的頭像 發表于 01-27 11:31 ?1322次閱讀

    淺談制備精細焊粉(超微焊粉)的方法

    制備精細焊粉的方法有多種,以下介紹五種常用方法
    的頭像 發表于 01-07 16:00 ?383次閱讀
    淺談制備精細焊粉(超微焊粉)的<b class='flag-5'>方法</b>

    訊飛星火低代碼智能體平臺全新升級

    Scaling Law魔法觸達瓶頸,智能體正在創造下一個風口。
    的頭像 發表于 11-28 14:42 ?1421次閱讀

    Jtti:常用的網絡質量監控方法有哪些

    常用的網絡質量監控方法包括以下幾種: 1. ICMP探測: ? 使用ICMP協議(如Ping)來檢測網絡連通性和質量。這種方法通過發送探測數據包并分析回包結果來監控網絡,典型指標包括丟包率、延遲等
    的頭像 發表于 11-15 15:50 ?967次閱讀

    eda中常用的數據處理方法

    探索性數據分析(EDA)是一種統計方法,用于使用統計圖表、圖形和計算來發現數據中的模式、趨勢和異常值。在進行EDA時,數據處理是至關重要的,因為它可以幫助我們更好地理解數據集,為進一步的分析和建模
    的頭像 發表于 11-13 10:57 ?908次閱讀

    異地組網最簡單的方法

    異地組網的方法多種多樣,每種方法都有其特定的優缺點和適用場景,本期梳理一些相對簡單且常用的異地組網方法,開始~ 一、使用硬件路由器的 VPN
    的頭像 發表于 10-24 11:16 ?1770次閱讀

    常用的devops工具集成方法

    常用的devops工具集成方法涵蓋了軟件開發和運維的各個方面,從版本控制到自動化構建、測試、部署和監控。這些工具的有效集成可以幫助團隊提高協作效率,減少溝通障礙,實現快速、高質量的軟件交付。
    的頭像 發表于 10-09 11:21 ?543次閱讀

    電源常用ic腳位解析方法 7腳電源芯片怎么看型號

    電源常用IC腳位解析方法 電源常用IC(集成電路)的腳位解析方法主要依賴于對IC引腳功能的理解,以及參考相關的技術手冊或數據手冊。以下是一些通用的解析步驟和注意事項: 查閱數據手冊 :
    的頭像 發表于 10-07 17:10 ?5653次閱讀

    安泰電壓放大器設計方法是什么樣的

    電壓放大器是電子領域中常用的設備,用于將低電壓信號放大成高電壓信號。電壓放大器在信號處理、通信系統、儀器測量、控制系統、醫療設備和研究和實驗室等領域都有著廣泛的應用。 電壓放大器的設計方法主要包括
    的頭像 發表于 09-19 11:24 ?586次閱讀
    安泰電壓放大器設計<b class='flag-5'>方法</b>是什么樣的

    磁共振檢查常用線圈及分類方法

    研究。線圈是MRI系統中的關鍵部件,用于接收和發射射頻信號,對成像質量具有重要影響。本文將介紹磁共振檢查中常用的線圈及其分類方法。 一、磁共振線圈的基本原理 1.1 核磁共振原理 磁共振成像基于核磁共振(Nuclear Magnetic Resonance,NMR)原理。
    的頭像 發表于 08-21 09:52 ?5939次閱讀

    浪潮信息趙帥:開放計算創新 應對Scaling Law挑戰

    Scaling Law帶來的AI基礎設施Scale up和Scale out的挑戰,數據中心需要以開放創新加速算力系統、管理和基礎設施的全向Scale進程,推動AI產業的創新發展。 ? 開源開放推動人工智能創新與算力生態的全面發展 生成式人工智能的飛躍式進步正在加速智能時代的到來,數據中心基礎
    的頭像 發表于 08-15 16:02 ?505次閱讀
    浪潮信息趙帥:開放計算創新 應對<b class='flag-5'>Scaling</b> Law挑戰

    常見的測量電池內阻的方法

    測量電池內阻的方法多種多樣,每種方法都有其獨特的原理和適用范圍。以下是一些常見的測量電池內阻的方法
    的頭像 發表于 08-13 18:14 ?6693次閱讀

    恒訊科技分析:常用的vps路由測試的工具和方法

    VPS(虛擬私人服務器)路由測試是評估服務器網絡性能的重要環節,以下是一些常用的工具和方法: 1、BestTrace:這是一款路由追蹤客戶端軟件,可以測試VPS的去程路由和回程路由。它具有可視化
    的頭像 發表于 08-08 22:54 ?776次閱讀
    主站蜘蛛池模板: jk黑色丝袜美腿老师啪啪 | 一区二区不卡免费视频 | 爱爱免费网站 | 国产成人福利夜色影视 | 9999毛片免费看 | 日日日天天射天天干视频 | 九九热精品在线观看 | 中国女人a毛片免费全部播放 | 亚洲一区二区三 | 久久亚洲精品国产亚洲老地址 | 在线精品国产成人综合第一页 | 日韩精品卡4卡5卡6卡7卡 | 成人中文字幕一区二区三区 | 欧美另类丰满69xxxxx | 狠狠干狠狠操视频 | 亚洲人成网站色7777 | 白嫩美女在线啪视频观看 | 老湿司午夜爽爽影院榴莲视频 | 日本在线观看www | 一本大道加勒比久久综合 | 天天色天天操综合网 | 中文天堂资源在线www | 亚洲1314 | 五月激情六月 | 日韩啪啪网 | 天堂网在线最新版官网 | 亚洲 另类色区 欧美日韩 | 四虎影院2022| 天天爽夜夜爽8888视频精品 | 包你爽综合网 | 爱爱毛片 | 中文天堂在线最新版在线www | 日韩毛片免费线上观看 | 黄色网 在线播放 | 亚洲欧美国产视频 | 免费一级毛毛片 | 午夜一区二区在线观看 | 国产精品午夜自在在线精品 | 国产成人三级视频在线观看播放 | 天天骑天天干 | 国产综合成色在线视频 |