液滴操縱在生物過程中無處不在,在能源、微流體、微反應(yīng)器、生物分析和醫(yī)療設(shè)備等技術(shù)應(yīng)用中也必不可少。受自然生物的啟發(fā),研究人員已開發(fā)出許多功能性表面來操縱液滴。例如,通過配置可切換的表面潤(rùn)濕性來實(shí)現(xiàn)響應(yīng)性的疏水表面。然而,目前大多數(shù)的液滴操縱方式都是基于響應(yīng)性的表面,被動(dòng)地實(shí)現(xiàn)操縱。
很少有報(bào)道能實(shí)現(xiàn)液滴在水平方向甚至反重力方向的主動(dòng)操縱。在這些工作中,液滴的操縱在很大程度上取決于響應(yīng)性表面。然而,響應(yīng)性表面的制備總是需要特定的響應(yīng)性材料。同時(shí),并非應(yīng)用場(chǎng)景中的所有表面都具有響應(yīng)性,因此無法實(shí)現(xiàn)液滴操縱。因此,這種被動(dòng)操縱方式的應(yīng)用受到嚴(yán)格限制。
目前,在傳統(tǒng)的非響應(yīng)性光滑表面上對(duì)功能性液滴進(jìn)行主動(dòng)操縱仍然是一個(gè)巨大的挑戰(zhàn)。 鑒于此,北京航空航天大學(xué)江雷院士、衡利蘋研究員等提出了一種通用的主動(dòng)操縱方法,實(shí)現(xiàn)了在光照射、電場(chǎng)和磁場(chǎng)下在無響應(yīng)的光滑表面上對(duì)光熱液滴、電液滴和磁液滴的主動(dòng)操縱。該工作還展示了在外部刺激下對(duì)不同液滴的聚結(jié)、微反應(yīng)、反重力操縱和篩選。
該項(xiàng)工作可以為不依賴于表面響應(yīng)性的主動(dòng)操縱液滴提供一種可行的策略,并推動(dòng)化學(xué)檢測(cè)、微流體、生物分析和藥物的發(fā)展。該研究以題為“Active Manipulation of Functional Droplets on Slippery Surface”的論文發(fā)表在最新一期Advanced Functional Materials期刊上。
光滑表面的制備過程
為了方便地操縱功能性液滴,研究人員構(gòu)建了一個(gè)穩(wěn)定的光滑凝膠表面。如圖1a所示,研究人員用旋涂的方式在玻璃基板上制備了PDMS基底。接著,在PDMS表面涂抹硅油后,獲得了光滑的PDMS表面。該方法制備的PDMS表面在浸泡硅油后幾乎看不到明顯的褶皺(圖 1g),保證了其光滑性,這為在光滑表面上自由操縱功能性液滴提供了基礎(chǔ)。
圖1PDMS基底的制造過程以及制備的硅油/PDMS光滑表面。
通過光照、電場(chǎng)主動(dòng)操縱液滴
研究人員將光熱性能良好的碳納米管加入液滴中,制備了光熱響應(yīng)型液滴。為了實(shí)現(xiàn)對(duì)光滑表面上光熱液滴的有效操縱,需要不對(duì)稱的光照射。使用氙弧燈作為光源,如圖2b所示,光強(qiáng)度從中心向邊緣逐漸減小。在操縱光熱液滴時(shí),光斑中心準(zhǔn)確地聚焦在液滴的左邊。如圖2c-f所示,在光照射幾秒鐘后,光熱液滴開始在光滑的表面上移動(dòng)。
在非對(duì)稱光源的照射下,液滴會(huì)不斷移動(dòng),直到整個(gè)液滴在暗區(qū)移動(dòng),最后停止。通過光照實(shí)現(xiàn)主動(dòng)操縱的原理是利用了在不對(duì)稱光斑下,液滴兩側(cè)的溫度不同。當(dāng)光斑中心作用于液滴的左側(cè)時(shí),左側(cè)的溫度會(huì)高于右側(cè)的溫度,溫度差異(ΔT)會(huì)引起液滴內(nèi)的Marangoni流動(dòng),并隨后形成驅(qū)動(dòng)液滴的驅(qū)動(dòng)力。
圖2 通過光操縱液滴 為了展示液滴的電驅(qū)動(dòng),研究人員選用四種液滴包括水、二甲基亞砜(DMSO)、十二烷基三甲基溴化銨(DTAB)溶液和1-乙基-3-甲基咪唑雙(三氟甲基磺酰)亞胺(離子液體,[EMIm]NTf?) 作為模型電滴。首先,研究人員用尼龍濾膜摩擦PDMS基板,來使光滑表面帶電(圖3a)。
帶電的 PDMS基板表現(xiàn)出很強(qiáng)的負(fù)電位(圖3b)。如圖3d-g所示,隨著金屬電極的靠近,當(dāng)距離減小到一定值時(shí),液滴會(huì)被驅(qū)動(dòng)。隨著液滴的向前移動(dòng),距離的逐漸增加,靜電相互作用會(huì)逐漸減少,減慢液滴的移動(dòng)速度。一旦移動(dòng)距離達(dá)到某個(gè)值,驅(qū)動(dòng)力將變得小于流體動(dòng)力阻力。最終,電滴會(huì)迅速停在光滑的表面上。實(shí)驗(yàn)結(jié)果表明,液滴的移動(dòng)距離符合以下順序:DMSO>DTAB>水> [EMIm]NTf?(圖3h)。
圖3 通過電場(chǎng)操縱功能性液滴在光滑表面上運(yùn)動(dòng)
圖4 通過電場(chǎng)操縱液滴在溶液表面運(yùn)動(dòng)
通過磁場(chǎng)主動(dòng)操縱液滴
最后,研究人員展示了通過磁場(chǎng)對(duì)液滴進(jìn)行主動(dòng)操縱。將磁性Fe?O?納米粒子添加到水中以制備磁性液滴。實(shí)驗(yàn)結(jié)果表明Fe?O?含量對(duì)液體表面張力沒有明顯影響。基于磁吸引力,磁滴可以通過磁鐵驅(qū)動(dòng)。
通過調(diào)整液滴與安放在液滴右下方的磁鐵之間的距離來測(cè)量磁液滴的最大移動(dòng)距離。實(shí)驗(yàn)結(jié)果表明,含有少量Fe?O?的液滴滑動(dòng)緩慢,含有大量Fe?O?的液滴能夠快速移動(dòng)。
通過磁場(chǎng)對(duì)液滴進(jìn)行簡(jiǎn)單的磁操縱是由于液滴和磁體之間的磁力。如圖5i?所示,在沒有磁鐵的情況下,液滴內(nèi)的Fe?O?納米顆粒的磁疇是無序的。在這種狀態(tài)下,沒有磁力產(chǎn)生,液滴表現(xiàn)出較大的接觸角。當(dāng)施加對(duì)稱的磁場(chǎng)時(shí),液滴內(nèi)的Fe?O?納米顆粒的磁疇沿磁感應(yīng)線有序排列(圖 5i?)。以這種方式,產(chǎn)生了液滴和磁體之間的磁力。
基于這種原理,研究人員通過0.4T磁場(chǎng)對(duì)不同磁性液滴進(jìn)行聚結(jié)、反重力操縱和篩選操作(圖6)。
圖5 通過磁場(chǎng)操縱液滴在光滑表面上運(yùn)動(dòng)
圖6 通過磁場(chǎng)操縱液滴進(jìn)行水平滑動(dòng)、反重力運(yùn)動(dòng)、聚結(jié)和篩選 綜上所述,該工作成功實(shí)現(xiàn)了在光照射、電場(chǎng)和磁場(chǎng)下在無響應(yīng)的光滑表面上對(duì)光熱液滴、電液滴和磁液滴的主動(dòng)操縱。與之前報(bào)道的操縱模式相比,該工作引入了一種通用的主動(dòng)操縱方法并規(guī)避了對(duì)表面響應(yīng)性的需求。
該方法能夠在外部刺激的觸發(fā)下,成功完成光滑表面上不同液滴的聚結(jié)、反重力操縱、微反應(yīng)和篩選。這一成果將為獨(dú)立于表面響應(yīng)性的液滴的主動(dòng)操縱以及化學(xué)檢測(cè)、微流體、生物分析和藥物中的相關(guān)技術(shù)應(yīng)用提供新的見解。
審核編輯:劉清
-
電磁場(chǎng)
+關(guān)注
關(guān)注
0文章
791瀏覽量
47290 -
電驅(qū)動(dòng)
+關(guān)注
關(guān)注
1文章
115瀏覽量
12292
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
用于微液滴的連續(xù)流動(dòng)洗滌微流控系統(tǒng)
基于流動(dòng)聚焦結(jié)構(gòu)的微液滴形成機(jī)理
![基于流動(dòng)聚焦結(jié)構(gòu)的微<b class='flag-5'>液</b><b class='flag-5'>滴</b>形成機(jī)理](https://file1.elecfans.com/web3/M00/03/70/wKgZPGdpEQSACC78AAAibl5t5rk602.png)
DFT在生物信號(hào)分析中的應(yīng)用
NOVA無誤差液滴微流體
基于介電電泳的選擇性液滴萃取微流體裝置用于單細(xì)胞分析
Aigtek功率放大器在超疏水表面非接觸式操控液滴研究中的應(yīng)用
![Aigtek功率放大器在超疏水表面非接觸式操控<b class='flag-5'>液</b><b class='flag-5'>滴</b>研究<b class='flag-5'>中</b>的應(yīng)用](https://file1.elecfans.com//web2/M00/0B/0B/wKgZomcsazSAKTiiAAFIwnD27Dg108.png)
ATA-1372A寬帶功率放大器在超聲驅(qū)動(dòng)噴嘴微液滴制備中的應(yīng)用
![ATA-1372A寬帶功率放大器在超聲驅(qū)動(dòng)噴嘴微<b class='flag-5'>液</b><b class='flag-5'>滴</b>制備<b class='flag-5'>中</b>的應(yīng)用](https://file1.elecfans.com/web2/M00/09/26/wKgZomcGYEmAY5EwAACV6eJlFyc609.png)
深視智能高速攝像機(jī)在液滴微控流實(shí)驗(yàn)中的應(yīng)用
![深視智能高速攝像機(jī)在<b class='flag-5'>液</b><b class='flag-5'>滴</b>微控流實(shí)驗(yàn)<b class='flag-5'>中</b>的應(yīng)用](https://file1.elecfans.com/web2/M00/FB/11/wKgZomaPO2WAWZ2HAAA6w9BJNJU371.png)
微流控芯片在生物學(xué)有何應(yīng)用?微流控芯片微液滴、檢測(cè)技術(shù)介紹
功率放大器在多組分微液滴交流電場(chǎng)下可控融合研究中的應(yīng)用
![功率放大器在多組分微<b class='flag-5'>液</b><b class='flag-5'>滴</b>交流電場(chǎng)下可控融合研究<b class='flag-5'>中</b>的應(yīng)用](https://file1.elecfans.com/web2/M00/02/ED/wKgaoma5qDiAP-mjAADmxld2iUg037.png)
基于光伏效應(yīng)和摩擦電效應(yīng)的液滴三維路由器,可用于醫(yī)療檢測(cè)
![基于光伏效應(yīng)和摩擦電效應(yīng)的<b class='flag-5'>液</b><b class='flag-5'>滴</b>三維路由器,可用于醫(yī)療檢測(cè)](https://file1.elecfans.com/web2/M00/EB/74/wKgaomZZI5uAMPT7AAAUzZo5K7A802.jpg)
三相微流控系統(tǒng)液滴在液-液界面上的自發(fā)轉(zhuǎn)移機(jī)制解析
![三相微流控系統(tǒng)<b class='flag-5'>液</b><b class='flag-5'>滴</b>在<b class='flag-5'>液</b>-<b class='flag-5'>液</b>界面上的自發(fā)轉(zhuǎn)移機(jī)制解析](https://file1.elecfans.com/web2/M00/C7/5A/wKgaomYJIC2AEB1eAABLEmhulsw598.png)
一種用于微液滴中單細(xì)胞無標(biāo)記分析的液滴篩選(LSDS)方法
![一種用于微<b class='flag-5'>液</b><b class='flag-5'>滴</b><b class='flag-5'>中</b>單細(xì)胞無標(biāo)記分析的<b class='flag-5'>液</b><b class='flag-5'>滴</b>篩選(LSDS)方法](https://file1.elecfans.com/web2/M00/C5/C4/wKgZomYCPqOAZz6SAABdoVM2VNk688.png)
鋰離子電池生產(chǎn)過程中濕度控制的重要性
![鋰離子電池生產(chǎn)<b class='flag-5'>過程中</b>濕度控制的重要性](https://file1.elecfans.com/web2/M00/BF/58/wKgaomWyJW6AbvAVAAAZ1TDD9PQ615.png)
液滴微流控技術(shù)研究進(jìn)展綜述
![<b class='flag-5'>液</b><b class='flag-5'>滴</b>微流控技術(shù)研究進(jìn)展綜述](https://file1.elecfans.com/web2/M00/BD/DE/wKgZomWvE-aAJUb8AABcNVS_sFs183.png)
評(píng)論