在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

Autopilot的識別堆棧內(nèi)深挖細品

jf_C6sANWk1 ? 來源:阿寶1990 ? 作者:阿寶1990 ? 2022-10-20 10:16 ? 次閱讀

在上期文章中,我們從Autopilot的感知堆棧的backbone網(wǎng)絡(luò)開始分析,從raw data到RegNet,再到BiFPN,最后來到多頭的Head結(jié)構(gòu),這就基本上給HydraNets的框架結(jié)構(gòu)定了性。在Tesla AI Day結(jié)束之后,很多關(guān)心自動駕駛產(chǎn)業(yè)發(fā)展的人,觀后感普遍是智商不夠,看不懂。而實際上,如果讀者不進入實際的研發(fā)領(lǐng)域,要理解Autopilot的工作機制、框架和基本脈絡(luò),實際上并沒有那么困難。而對于Autopilot整體框架的理解,一旦有心得,對于自動駕駛行業(yè)的從業(yè)者、愛好者和政策關(guān)注者,其實都是大有裨益的。

而作為一個典型的跨學(xué)科產(chǎn)業(yè),傳統(tǒng)封閉知識結(jié)構(gòu)的限制讓很多初次涉足自動駕駛行業(yè)的新手來說,都會感到明顯困難。一個突出的問題就是交叉學(xué)科概念實在太多太新了,往往名詞都看不懂,就不要說深究了。所以,小編寫這個系列文章的初衷就是盡可能拉低閱讀門檻,讓每個感興趣的讀者開卷有益。畢竟,Tesla這種具備開放心態(tài)的先鋒企業(yè),不是總能遇得到的。

所以關(guān)注這個系列的讀者,在看系列中任何一篇文章的時候,都可以聯(lián)系系列中的其它文章串起來看,各種新鮮的名詞解釋和上下文串講會協(xié)助諸位和小編一起跑完這個理解的過程的。

086ba698-5018-11ed-a3b6-dac502259ad0.png

圖一【Tesla transformer-33.png】來自論文《EfficientDet: Scalable and Efficient ObjectDetection》中的插圖,獲取URLhttps://arxiv.org/pdf/1911.09070.pdf;

這是上一篇文章中我們所講的關(guān)鍵點BiFPN網(wǎng)絡(luò)結(jié)構(gòu),其中BiFPN和其他上下游的網(wǎng)絡(luò)結(jié)構(gòu)交代得比較清楚,所以小編在這里再強調(diào)一次。上圖左半部分為Google的EfficientNet,是一種典型的層次化的CNN Backbone結(jié)構(gòu),上圖中顯示為7層,每一層的分辨率逐漸降低,但是特征Feature map也是在這個過程中通過卷積計算來實現(xiàn)搜集的。重要的是,我們可以清晰地觀察到,從第3層到第7層的Feature map數(shù)據(jù)被依次輸入到BiFPN網(wǎng)絡(luò)內(nèi),從而可以利用BiFPN的融合結(jié)構(gòu)設(shè)計,將不同層次的feature按照預(yù)定義的規(guī)則融合到一起,制造更準確的識別結(jié)果。

上圖(圖一)的最右側(cè)顯示了這個整體模型中的Task Head,顯示了優(yōu)化后的backbone所提供的feature map最終被用于何種任務(wù)的實現(xiàn)。其中一個是分類任務(wù)Class,另一個是定位任務(wù)Box共兩個任務(wù)。它們兩個共享了EfficentNet backbone+BiFPN的特征識別結(jié)果,實現(xiàn)了算力的共享和高效利用。

在一個典型的CNN網(wǎng)絡(luò)中(以下圖為例是VGG16)另一個直觀的案例,原始的Input image在后續(xù)的一些列卷積處理之后,最終按照任務(wù)的要求實現(xiàn)Output輸出。通常講,CNN被用于網(wǎng)絡(luò)內(nèi)容的識別,并在識別后按照識別結(jié)果的類別來報告輸出。下圖模型就是干這個的。

089fc2ca-5018-11ed-a3b6-dac502259ad0.png

圖二【Tesla transformer-34.png】來自youtube.com中賬號@denisdmitriev的VGG16 Neural Networkvisualization視頻的插圖,獲取URLhttps://www.youtube.com/watch?v=RNnKtNrsrmg;

如果將這個VGG16的卷積模型拉伸開來,就可以清晰地展示出每一個卷積層、池化層的輸出直觀計算(or感知)結(jié)果,如下:

09d09e62-5018-11ed-a3b6-dac502259ad0.png

0a5b61a0-5018-11ed-a3b6-dac502259ad0.png

圖三【Tesla transformer-35、36.png】來自youtube.com中賬號@denis dmitriev的VGG16 Neural Network visualization視頻的插圖,獲取URLhttps://www.youtube.com/watch?v=RNnKtNrsrmg;

由于不同卷積算子的卷積計算,原始圖像中的蘋果(或者洋蔥),其不同的特征被捕捉出來,比如顏色、形狀、表皮類型、根莖形狀,甚至不同物種常常呈現(xiàn)的不同的凹凸不平的特點,都被CNN抓出來,并通過BiFPN類似的特征融合機制形成最終的認知,或者提供給后端Task Head有效的、良好的認知素材。從這個流程上看,CNN對于圖像信息特征的捕捉方式,幾乎和人類對于圖像的感知方式一致了。當然,人類的感知能力除了視覺信息分析,我們還具備觸覺、味覺和更一般的“世界知識體系”……這是AI暫時所做不到的。比如,兩個在外觀上完全一致的蘋果和洋蔥,人類視覺無法判斷分類結(jié)果,自然會拿在手上掂量一下,甚至聞一下、嘗一口,最終總是可以找到正確答案的。

之前在這個系列的第一篇文章里,我們談到過AI技術(shù)演進的下一個方向,也有對于多模態(tài)信息的綜合感知,那是因為Transformer體現(xiàn)出了一定的多模態(tài)數(shù)據(jù)處理能力。其實CNN技術(shù)本身也有同時被應(yīng)用于圖形和語言的信息處理領(lǐng)域,但顯然自動駕駛領(lǐng)域內(nèi)的感知問題,在當前階段還是應(yīng)該關(guān)注圖形數(shù)據(jù)(視覺傳感器)為核心,解決了視覺問題,大概99%的問題都被解決了。在此基礎(chǔ)之上的更進一步感知多模態(tài)信息,才扎實。

0a87da14-5018-11ed-a3b6-dac502259ad0.png

圖四【Tesla transformer-37.png】來自Tesla AI day主題演講視頻截圖,URLhttps://www.youtube.com/watch?v=j0z4FweCy4M&t=4115s;

Backbone+Task heads的整體架構(gòu)如上圖,這就是標準的多任務(wù)系統(tǒng)HydraNets。在這個多任務(wù)Heads框架中從左到右分別是Object Detection Task(應(yīng)該包含靜態(tài)和動態(tài)所有道路目標的識別)、Traffic Lights Task(交通燈和其它交通標識的識別)和Lane Prediction Task(車道線及可行駛區(qū)域識別)。實際上FSD beta現(xiàn)在這個階段,使用到CNN backbone的任務(wù)一定不止以上三個。細分任務(wù)的原則是一個Head task無法處理和涵蓋一個類別的任務(wù),就需要擁有獨立的Head Task。比如小編推測在Lan Prediction Task中,可能不僅僅是各種車道線的識別和預(yù)測,還有可能包含同樣關(guān)鍵的馬路邊緣路緣石邊界的識別。在這個具象的Task中,系統(tǒng)框圖只給出了regression方法(reg),在對于車道線的識別這是一個普遍的方法,因為車道線基本上可以用一個固定的二次函數(shù)、三次函數(shù)既可以描述出車道線走勢,所以機器學(xué)習(xí)里涉及的車道線識別方法,使用regression回歸方法來預(yù)測車道線的多項式系數(shù)即可,這是個慣用的標準做法。但對于馬路邊緣路緣石構(gòu)成的可行駛區(qū)域邊界的識別,因為路緣石邊界的不規(guī)則屬性,可能無法服用regression方法。感興趣的讀者可以參考PolyLaneNet車道線識別的方法,互聯(lián)網(wǎng)可查。

0ab76694-5018-11ed-a3b6-dac502259ad0.png

圖五【Tesla transformer-38.png】來自Youtube站點博主@Frenchie的測試視頻截圖,URLhttps://www.youtube.com/watch?v=rfTpt8phxL4;

上圖可以觀察到FSD beta的中控屏幕顯示的紅色曲線為路緣石線條,由于基建處理路緣石的考量不僅僅是勾畫車輛可行駛區(qū)域,相對地也要考慮行人道上的各種設(shè)備需求,因此它并不是一直和車道線保持并行,會有非規(guī)則曲線的場景出現(xiàn)。上圖中這個場景下,顯示的識別結(jié)果出現(xiàn)錯誤,且這個非規(guī)則的路緣石不可能用低次曲線擬合出來。

對于object和traffic light的預(yù)測分類(屬性)和位置,則使用了classification、regression和attribution方法。類似的可以借鑒和查詢的論文就更多了,YOLO系列就是一個完美的參考,互聯(lián)網(wǎng)可查。

除了多頭的任務(wù)本身,圖四所顯示的多任務(wù)架構(gòu)還需要注意的是Tesla在Backbone和Head之間插入了一個叫做multi-scale features的cache環(huán)節(jié)。這個環(huán)節(jié)在模型的測試過程中扮演了關(guān)鍵角色。按照Karpathy的解釋,訓(xùn)練過程如下:

1 首先進行的是end to end的聯(lián)合訓(xùn)練,輸入是視覺raw data,輸出是所有任務(wù)的輸出。監(jiān)督所有子任務(wù)的準確度,并根據(jù)準確度進行干預(yù)(系統(tǒng)自動執(zhí)行誤差的反向傳播)。這樣的訓(xùn)練結(jié)果將會導(dǎo)致所有子任務(wù)的“集體最優(yōu)結(jié)果”;

2 end to end的聯(lián)合訓(xùn)練會導(dǎo)致子任務(wù)集體最優(yōu),但因為子任務(wù)之間不可能做到邏輯上的完全隔離,因此集體最優(yōu)一定不是單個子任務(wù)的“個體最優(yōu)結(jié)果”,因此需要以單個任務(wù)為核心進行調(diào)優(yōu)fine tunning;

3 以單個子任務(wù)為核心的fine tunning的輸入為經(jīng)過聯(lián)合調(diào)優(yōu)后確立的backbone所輸出的multi-scale features,從位于中部的那個cache里直接獲??;輸出則為各自子任務(wù)的輸出,還是經(jīng)過監(jiān)督學(xué)習(xí)機制,最后將每個子任務(wù)收斂到各自的最優(yōu)狀態(tài);

4 然后重復(fù)1的end to end聯(lián)合訓(xùn)練……

上述這個迭代流程可以確保網(wǎng)絡(luò)整體效能最優(yōu),且各個子任務(wù)的準確度最佳。橫向看,這并非Tesla的專利(小編:盡管Tesla有訓(xùn)練多任務(wù)系統(tǒng)的一些專利,我們之前的文章有涉及過),業(yè)內(nèi)處理自動駕駛系統(tǒng)內(nèi)的多任務(wù),大抵如此手法。但knowhow在于如何處理車載硬件的CPU算力——訓(xùn)練方法的有效性——最終模型輸出的準確性,這三者之間的矛盾,達到和諧統(tǒng)一。這個Tesla當然不會細說,就比如這個cache內(nèi)部的multi-scale feature,到底如何分配給不同的子任務(wù)可以協(xié)助子任務(wù)的預(yù)測水平實現(xiàn)最優(yōu)?這就是Tesla的秘密了。

別的不好說,但是顯然的是,誰的數(shù)據(jù)(有效數(shù)據(jù))最多最豐富最極端corner,誰就最有把握接近最佳模型。Tesla雖然扔掉了所有的毫米波雷達回波數(shù)據(jù),也不屑于Lidar的點云數(shù)據(jù),但在視覺領(lǐng)域的積累應(yīng)該還是有底氣的。

截至目前,HydraNets架構(gòu)已經(jīng)可以支撐標準的L2自動駕駛業(yè)務(wù)了。對于Tesla來說,自從和Mobileye分手之后,HydraNets的框架就已經(jīng)(也必須)開始部署了,無非是在框架內(nèi)選擇不同的具體技術(shù)進行性能更新而已。但實際上如果要往更高層級的自動駕駛自治邁進,對于HydraNets架構(gòu)的擴展就勢在必行了。

0baa00e8-5018-11ed-a3b6-dac502259ad0.png

0c269db0-5018-11ed-a3b6-dac502259ad0.png

圖六【Tesla transformer-39、40.png】來自Tesla AI day主題演講視頻截圖,URLhttps://www.youtube.com/watch?v=j0z4FweCy4M&t=4115s;

以上兩張圖代表了兩種不同級別的自動駕駛應(yīng)用,想必各位讀者已經(jīng)耳熟能詳了。前者是典型的單目攝像頭所獲取的信息,以及背后的多任務(wù)HydraNets NN架構(gòu)的識別結(jié)果。從Mobileye開始普及典型的Level-2自動駕駛系統(tǒng)以來,Tesla Autopilot就一直是這個思路。唯一的變化就是2016年脫離和Mobileye的合作之后,Autopilot有一個階段是采用了Camera+mm Radar的傳感器組合,2021年上半年則轉(zhuǎn)向Full vision。

上圖前者的識別結(jié)果確實豐富,我們有過專門的公眾號文章對Autopilot在這個階段對于單目視覺信息的識別做了解讀。但這個識別結(jié)果,哪怕融合了毫米波雷達的速度信息,支持更高等級的自動駕駛?cè)蝿?wù)也是不夠用的。所以才有了上圖后者的需求,車輛哪怕是在封閉場地和低速的限制條件下,例如Smart summon(停車場智能召喚功能),也必須要掌握主車四周的全視角道路狀態(tài)(可行駛區(qū)域),才有可能進行路徑規(guī)劃,并發(fā)現(xiàn)召喚者。注:上圖中的九個視覺輸出中有兩個黑塊,意味著車身一共8個攝像頭,supper narrow遙距攝像頭并在Smart summon中參與道路3D信息捕獲和可行駛道路區(qū)域的識別。

對于Tesla Autopilot系統(tǒng)的識別堆棧談到這里,讀者應(yīng)當注意這個主題的本質(zhì):花多少錢辦多少事兒。迄今為止對于CNN Backbone和純視覺的堅持,可以在大部分的Level-2任務(wù)上得到技術(shù)落地和回報,并在更大范疇的技術(shù)框架上一錘定音、不走回頭路以適應(yīng)越來越高的NN技術(shù)占比對于龐大有效的數(shù)據(jù)量的需求。只要這一步走對了,小編的角度看,Tesla就算成功了一半。自動駕駛系統(tǒng)在未來能走多遠?走多快?這就不僅僅是一家公司的事情了,很多問題也還是基礎(chǔ)科學(xué)、科學(xué)技術(shù)產(chǎn)業(yè)化的問題。舉個非常簡單的例子,純視覺如何克服目標深度信息預(yù)測的準確度和時效性問題?神經(jīng)網(wǎng)絡(luò)算子新貴Transformer轉(zhuǎn)戰(zhàn)視覺信息處理的突破,是如何提供給Tesla一個良好的視覺場轉(zhuǎn)化工具的?這里面有偶然,但更多是必然,我們相信只要走在正確的路上,困難就總是暫時的。

具體而言,當Tesla意識到前向單目攝像頭所捕獲的視覺信息,哪怕對其再精耕細作和堆砌大量數(shù)據(jù)訓(xùn)練出來的模型,這個能力進展也無法處理更高等級的自動駕駛技術(shù)需求的時候,并沒有將現(xiàn)有識別堆棧推倒重來,而是繼續(xù)向前選擇了顯性的C++人工代碼試圖提供車身四周完整的3D視角視覺信息……如下圖:

0c5ca266-5018-11ed-a3b6-dac502259ad0.png

圖七【Tesla transformer-41.png】來自Tesla AI day主題演講視頻截圖,URLhttps://www.youtube.com/watch?v=j0z4FweCy4M&t=4115s;

這個被叫做“Occupancy Tracker”的人工代碼被嵌入到Smart summon這個應(yīng)用的Task head底部,完成從CNN backbone提取feature map后,需要參照車身攝像頭的幾何尺寸將其轉(zhuǎn)換到路徑規(guī)劃所需要的Birds-view map。

360度的俯視圖Birds-view map在大多數(shù)Level-2自動駕駛應(yīng)用場景中,并非必要。但在更高等級的自動駕駛系統(tǒng)中,多傳感器數(shù)據(jù)處理結(jié)果(小編:同構(gòu)或者異構(gòu)傳感器都可以)終結(jié)在Birds-view map俯視圖結(jié)構(gòu)上,并提供給后端路徑規(guī)劃,還是最合適的。人類構(gòu)建的公路系統(tǒng)是嚴格符合“連續(xù)平面”屬性的,因此忽略高度信息的俯視圖在規(guī)劃中,比車載相機獲取的或略深度信息的投影平面,更能表現(xiàn)出道路上各種物體的相對位置關(guān)系。但問題在于如果路面拓撲過于復(fù)雜,且視覺傳感器會因為各種遮擋場景而只獲取部分信息,在這個基礎(chǔ)上,人工代碼往往力不從心。

對于上圖七的觀察我們就可以看到,在CNN backbone上增加Birds-view map獲取的“Occupancy Tracker”代碼Head之后,可以實現(xiàn)從camera視覺信息到俯視圖的轉(zhuǎn)換,但問題同樣明顯:

1 Karpathy標識這段代碼功能非常難以落地,具體表現(xiàn)為對于場景適應(yīng)能力很差,可能在一部分場景下表現(xiàn)尚可,但一旦出現(xiàn)特殊的道路拓撲,就會失效;

2 精度問題。

上圖七左上角是Birds-view map的輸出結(jié)果,車輛左轉(zhuǎn)彎之后,前方兩側(cè)都出現(xiàn)大面積的無法識別狀態(tài),右后側(cè)出現(xiàn)識別精度大誤差狀態(tài)(紅色線條重疊)。讀者可以想象,一旦車速增加、出現(xiàn)大面積的路邊遮擋物和道路拓撲劇烈改變等等,識別效果會進一步惡化。

0ca974d8-5018-11ed-a3b6-dac502259ad0.png

圖八【Tesla transformer-42.png】來自Tesla AI day主題演講視頻截圖,URLhttps://www.youtube.com/watch?v=j0z4FweCy4M&t=4115s;

如果我們從smart summon應(yīng)用再往前走一步,在所有道路條件下提供投影成像到Birds-view map的轉(zhuǎn)換,再從路緣石邊界(上圖紅色線條)擴展到對于車道線(上圖藍色箭頭)的識別和轉(zhuǎn)換視角,則之前的Occupancy tracker所面臨的問題會被進一步放大。圖八中,我們可以看到在camera投影視圖中的路緣石邊緣識別結(jié)果,因為天然在精度上的誤差,經(jīng)由精確的幾何變換后,在俯視圖上的誤差得到進一步放大,甚至到會引發(fā)解讀歧義的問題:認真看投影視圖中的紅色線條,是對路緣石的一種近似的擬合結(jié)果。CNN Backbone的各種CNN識別結(jié)果,在單目鏡頭的視覺投影信息中,只能依賴CNN的對于人類智能模擬之后的近似。Camera不可能提供和Lidar等同的測量精度,Camera+CNN更多意義上的操作本質(zhì)是“預(yù)測”。因此,建立在預(yù)測結(jié)果上,對于近似的預(yù)測結(jié)果進行“硬橋硬馬”的集合轉(zhuǎn)換,結(jié)果就只能是這個水平。

圖中的黃色和綠色箭頭所指位置,投影成像的線條近似,被轉(zhuǎn)換為以車輛攝像頭為圓心的圓弧段,沒錯,Occupancy Tracker認為線段上的每一個點,到攝像頭的距離都是一樣的…….由此,更新Occupancy Tracker代碼,使用同質(zhì)的NN網(wǎng)絡(luò)來模擬人類的預(yù)測行為,來完成這個視場轉(zhuǎn)換任務(wù),就是Autopilot識別堆棧的下一個核心重點了!

審核編輯 :李倩

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 堆棧
    +關(guān)注

    關(guān)注

    0

    文章

    183

    瀏覽量

    20072
  • 自動駕駛
    +關(guān)注

    關(guān)注

    788

    文章

    14252

    瀏覽量

    170043
  • Autopilot
    +關(guān)注

    關(guān)注

    0

    文章

    44

    瀏覽量

    7061

原文標題:Tesla Vision背后的變形金剛——系統(tǒng)需要的是測量還是預(yù)測?

文章出處:【微信號:阿寶1990,微信公眾號:阿寶1990】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦
    熱點推薦

    芯資訊|廣州唯創(chuàng)電子語音識別芯片:全場景覆蓋與長效品質(zhì)

    芯片市場中脫穎而出,成為行業(yè)標桿。一、全場景覆蓋的產(chǎn)品矩陣,精準匹配多元需求廣州唯創(chuàng)電子深挖市場需求,針對不同應(yīng)用場景和成本需求,構(gòu)建了業(yè)內(nèi)最完善的語音識別芯片產(chǎn)
    的頭像 發(fā)表于 05-20 08:36 ?132次閱讀
    芯資訊|廣州唯創(chuàng)電子語音<b class='flag-5'>識別</b>芯片:全場景覆蓋與長效品質(zhì)

    AFE5801 TGC配置中采用Static PGA模式時調(diào)增益配置的疑問求解

    對AFE5801 TGC配置時,采用Static PGA模式,對coarse_gain和fine_gain分別配置時,發(fā)現(xiàn)粗調(diào)寫進去了,但是調(diào)增益麥斯沒寫進去。 比如:調(diào)增益寫的是16
    發(fā)表于 02-06 08:36

    AFE5801調(diào)增益不起作用的原因?怎么解決?

    采用STATIC PGA模式配置AFE5801芯片時,99【2:0】為調(diào)增益配置單元,寫如0代表0dB,寫入7代表0.875dB。但是寫入0和7時采集到的數(shù)據(jù)大小沒有發(fā)生變化,不知道為什么?
    發(fā)表于 01-24 08:00

    AFE5801調(diào)增益不起作用是什么原因?qū)е碌模?/a>

    采用STATIC PGA模式配置AFE5801芯片時,99【2:0】為調(diào)增益配置單元,99地址單元分別寫的是24\'h990009和24\'h99000f,分別對應(yīng)著0.125dB
    發(fā)表于 01-24 07:01

    AUTOSAR中通信堆棧的配置 AUTOSAR通信模塊測試方法

    )的開發(fā)和生產(chǎn)。通信堆棧是AUTOSAR架構(gòu)中的關(guān)鍵組成部分,負責處理ECU之間的通信。 AUTOSAR中通信堆棧的配置 通信模型 : AUTOSAR定義了一種分層的通信模型,包括應(yīng)用層、診斷層、網(wǎng)絡(luò)
    的頭像 發(fā)表于 12-17 15:01 ?874次閱讀

    TMS320C28x DSP上的在線堆棧溢出檢測

    電子發(fā)燒友網(wǎng)站提供《TMS320C28x DSP上的在線堆棧溢出檢測.pdf》資料免費下載
    發(fā)表于 10-18 11:16 ?1次下載
    TMS320C28x DSP上的在線<b class='flag-5'>堆棧</b>溢出檢測

    使用Simplelink無線MCU系列克隆Z堆棧網(wǎng)絡(luò)屬性

    電子發(fā)燒友網(wǎng)站提供《使用Simplelink無線MCU系列克隆Z堆棧網(wǎng)絡(luò)屬性.pdf》資料免費下載
    發(fā)表于 09-26 10:57 ?0次下載
    使用Simplelink無線MCU系列克隆Z<b class='flag-5'>堆棧</b>網(wǎng)絡(luò)屬性

    使用Simplelink?無線MCU系列測量堆棧終端器件功耗

    電子發(fā)燒友網(wǎng)站提供《使用Simplelink?無線MCU系列測量堆棧終端器件功耗.pdf》資料免費下載
    發(fā)表于 09-26 10:44 ?0次下載
    使用Simplelink?無線MCU系列測量<b class='flag-5'>堆棧</b>終端器件功耗

    電感器線徑究竟是粗好還是

    電子發(fā)燒友網(wǎng)站提供《電感器線徑究竟是粗好還是好.docx》資料免費下載
    發(fā)表于 09-20 11:25 ?0次下載

    C2000?MCU的運行時堆棧大小監(jiān)測

    電子發(fā)燒友網(wǎng)站提供《C2000?MCU的運行時堆棧大小監(jiān)測.pdf》資料免費下載
    發(fā)表于 09-11 09:30 ?0次下載
    C2000?MCU的運行時<b class='flag-5'>堆棧</b>大小監(jiān)測

    德州儀器(TI)Wi-SUN? 堆棧:幀計數(shù)器驗證缺失

    電子發(fā)燒友網(wǎng)站提供《德州儀器(TI)Wi-SUN? 堆棧:幀計數(shù)器驗證缺失.pdf》資料免費下載
    發(fā)表于 09-06 11:31 ?0次下載
    德州儀器(TI)Wi-SUN? <b class='flag-5'>堆棧</b>:幀計數(shù)器驗證缺失

    堆棧和內(nèi)存的基本知識

    本文主要聊聊關(guān)于堆棧的內(nèi)容。包括堆棧和內(nèi)存的基本知識。常見和堆棧相關(guān)的 bug,如棧溢出,內(nèi)存泄漏,堆內(nèi)存分配失敗等。后面介紹軟件中堆棧統(tǒng)計的重要性,以及如何使用工具工具軟件中
    的頭像 發(fā)表于 08-29 14:10 ?988次閱讀
    <b class='flag-5'>堆棧</b>和內(nèi)存的基本知識

    如何使用Polyspace Code Prover來統(tǒng)計堆棧

    前一篇文章介紹了堆棧和內(nèi)存的一些背景知識。本次介紹如何使用 Polyspace Code Prover來統(tǒng)計堆棧,如何使用這些數(shù)據(jù)為軟件優(yōu)化服務(wù)。
    的頭像 發(fā)表于 07-25 14:06 ?1116次閱讀
    如何使用Polyspace Code Prover來統(tǒng)計<b class='flag-5'>堆棧</b>

    請問est_printf為什么要使用堆棧空間?

    - 它應(yīng)該只是減慢你的代碼,因為它在等待輸出調(diào)試消息時什么都不做 - 不會占用堆棧空間。 我用 ets_printf 儀器化了 malloc 和 free。 發(fā)生這種情況時,會生成一個異常,即在
    發(fā)表于 07-09 07:47

    Soundcheck 自動比對程序 標準比對

    Soundcheck 是聲學(xué)測試中比較標準化的軟件,有很強的二次開發(fā)性,A產(chǎn)品體系下指定的聲學(xué)測試軟件,涉及到測試的部分就離不開定期的標準點檢,而聲學(xué)曲線的比對比常規(guī)的電測、光學(xué)量測等的標準比對
    發(fā)表于 06-27 22:09
    主站蜘蛛池模板: 国产综合精品久久久久成人影 | 日本成人在线网址 | 亚洲精品私拍国产福利在线 | 91在线网址| 黄视频免费在线观看 | ccav在线永久免费看 | 六月丁香婷婷激情 | 亚洲综合一区二区 | 人人成人免费公开视频 | 亚a在线 | 免费我看视频在线观看 | 午夜视频网站在线观看 | 日本黄色视屏 | 狼色视频在线观免费观看 | 午夜看片福利 | 天堂bt种子资源地址在线 | 欧美三级手机在线 | 免费黄色在线视频 | 天天干天天操天天干 | 国产精品主播在线观看 | 最黄色的视频 | 女人张腿让男子桶免费动态图 | 国产精品久久久久免费 | 色多多在线观看视频 | 日本特黄特色大片免费播放视频 | 天天噜噜色 | 国产一级做a爱免费视频 | 国产色视频在线 | 成人性色生活片免费看爆迷你毛片 | 欧美三级成人 | 激激婷婷综合五 | 午夜欧美电影 | 日本精高清区一 | a资源在线观看 | 中文字幕一区二区三区四区五区 | 韩国免费三片在线视频 | 婷婷爱爱| 成年在线视频 | 18年大片免费在线观看 | 四虎在线观看免费视频 | 五月婷婷色丁香 |