在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

人工智能“入侵”芯片制造

西門子EDA ? 來源:西門子EDA ? 作者:西門子EDA ? 2022-11-25 14:50 ? 次閱讀

目前人工智能AI)正在變革多個行業。有一個很有趣的現象:人工智能正在幫助推動人工智能芯片的進步。早在2021年6月,谷歌就利用AI來設計其TPU芯片。谷歌表示,人工智能可以在不到6小時的時間內完成人工需要數月時間完成的芯片設計工作?!禢ature》的一篇評論稱這項研究是一項“重要成就”,并指出此類工作可以幫助抵消摩爾定律的終結。除此之外,英偉達已經開始使用人工智能來有效地改進和加速 GPU 設計;三星也已經談論到了使用人工智能設計芯片。

但這遠不是人工智能輔助芯片的唯一應用,AI技術正滲透到更多芯片業的核心環節,其中在制造這一芯片產業鏈的關鍵環節,AI也在悄然發力。

芯片制造環節,良率越來越受到考驗

現在幾乎所有的應用包括5G物聯網、汽車、數據中心等的實現與發展都建立在更高性能、更低功耗、更大算力的芯片的基礎之上。芯片的需求大幅提升,而芯片的供應卻跟不上需求,提升現有產品的良率是業內公認的有效措施。

然而,良率的提升卻給芯片設計商和制造商都帶來了很大的挑戰。

制造是半導體產業鏈的關鍵一環。整個制造過程主要分為八個步驟:晶圓加工 - 氧化 - 光刻 - 刻蝕 - 薄膜沉積 - 互連 - 測試 - 封裝,每個芯片的制造步驟又需要數百個工藝。芯片生產制造的周期動輒兩三個月,生產過程中產生的數據量龐雜,涉及的參數變量繁多,任何一點微小的變化都能影響到最終芯片的良率。

遵循著摩爾定律的工藝制程演進是芯片實現高性能計算最為有效的途徑之一,也是產業追逐的方向。而隨著芯片工藝來到更先進的5nm、3nm,芯片設計復雜度呈幾何倍數增加,生產流程的不斷加長,芯片的制造變得極其復雜與精密,良率變得極具挑戰。據半導體設備供應商巨頭應用材料公司表示,從2015年到2021年,芯片制造的工藝步驟的數量增加了48%。相比成熟節點,先進節點的基準良率也越來越低。

而在半導體的商業化進程中,良率直接關系到芯片的產量、生產成本與企業的盈利能力。所以說,僅僅通過芯片工藝技術的改進來提高PPA變得越來越困難,而且從性價比來看,芯片流片的費用越來越貴,只有極少數的芯片公司才能負擔得起。

因此,既要提升芯片的良率又要在經濟上可行,必須要多管齊下,探索創新的方法。在如今這個高度自動化的時代,引入人工智能/機器學習等技術,推動芯片的制造流程,提升芯片的良率,進而幫助我們快速彌合算力供需之間的差距。

AI的強勢出擊

芯片制造是世界上最昂貴的生產工藝之一。芯片產量決定了諸如英特爾、三星、臺積電等晶圓廠商的成敗。他們不惜投入大量資源來使晶圓廠全天候運營,以實現長期利潤最大化。

半導體制造商需要依靠掃描、測試和診斷來幫助故障分析以解決良率問題。后端的缺陷檢測無疑是提升芯片良率的一大“把關者”?,F在大多數先進的SoC使用了極小的制造工藝,有的甚至引入EUV光刻技術,對制造商來說更加難以定位芯片上的微小故障和缺陷;并且在制造3D結構和執行復雜的多圖案化步驟時,其中一些小的差異會累積以產生良率抑制缺陷,如果其中的一些微小的差異被延遲檢測到,那么之后進行的所有流程步驟基本上都是浪費時間和金錢。他們發現缺陷的時間越長,損失的錢就越多。

為了解決這一行業難題,半導體設備供應商應用材料(Applied Materials)將人工智能融入到晶圓檢測流程,從2016年開始應用材料就使用ExtractAI技術開發Enlight系統,于 2020 年推出了新一代Enlight光學半導體晶圓檢測機,該檢測設備引入了大數據和AI技術。Enlight 系統只需不到一個小時就可以繪制出晶圓上數百萬個潛在缺陷。

應用材料表示,結合他們的Enlight光學檢測、ExtractAI技術和SEMVision eBeam審查功能,他們解決了最困難的檢測挑戰:將影響良率的缺陷與噪聲區分開來,還可以實時學習和適應工藝變化。而且通過生成大數據,Enlight系統將捕獲關鍵缺陷的成本降低了3倍。這將使晶圓廠可以比以往更快地接收更多可操作的數據,從而降低擁有成本并加快產量和上市時間。目前,這些最新的工具集已經安裝在多個晶圓廠中,這些晶圓廠都在使用它來縮短最新技術的良率。

應用材料公司表示,Enlight是其產品線中第一個使用人工智能來改進生產過程的系統,還有更多人工智能增強系統正在籌備中。

檢測設備是后期制造環節提升良率中的一個措施,而如果能在IC開發的物理設計階段就采取必要的措施,將良率的把控逐步轉移到芯片前端設計,來確保能夠準確地制造設計,那么就能提高產量并防止產品交付給客戶后可能出現的缺陷。這在行業內稱之為DFM(Design-for-Manufacture),該概念幾乎存在于所有工程學科中。

在芯片設計端的DFM,EDA供應商們正致力于將各種AI功能集成到工具流中。

舉例來看,西門子EDA的Calibre SONR工具就內嵌了機器學習引擎TenssorFlow,通過將并行計算和ML技術融入到EDA工具中去,使得EDA工具具有更快的運行速度。Calibre物理驗證平臺涵蓋了Signoff級驗證的Layout、Mask以及芯片制造過程中所有驗證步驟。Calibre的產品線還在不斷擴充,通過產品之間的互補優勢真正做到從芯片設計端一路延伸至芯片制造端。這不僅能夠幫助設計人員可以胸有成竹地實施物理驗證和交付設計,并能大幅提升流片良率,縮短芯片產品上市時間并加快創新速度。

仿真一直是芯片設計師的痛,隨著先進工藝和超低電壓的發展需求,仿真領域面臨著數據量大、時序庫提取時間長、暴力窮舉太慢、STA工具做內差法精度不夠等痛點,而如果利用機器學習算法,通過大數據的方式分析已有數據庫,通過多個表面模型互聯,構建一個多維模型,??通過這樣模型的創建去推測?出一個新的?? Corner下的數據庫。這樣的方式與SPICE仿真或者內差法相比,可以說是跨代競爭,無論是速度還是精度,都有巨大的優勢。西門子EDA推出的Solido機器學習技術,能夠對單一時序庫文件的提取加速近百倍(相較傳統SPICE方式),對整體時序庫提取速度提升2到3倍,同時還可以把精度控制在可接受的范圍之內。

驗證也在伴隨著SoC的復雜而日益復雜和困難的一項工作,驗證工作在芯片研發中所占的比重也越來越大,因為如此繁重的驗證工作必須保證百分之百正確才能確保流片的成功。關于這個挑戰,也可以交給AI,機器學習被用來自動選擇解析器策略,以執行西門子EDA OneSpin中與形式驗證有關的斷言證明。

隨著工藝和設計向前推進,良率丟失的根因變得越來越復雜,故障隔離技術面臨挑戰,提高診斷分辨率成為減少良率爬坡時間的首要任務。在這方面,西門子EDA 的Tessent Diagnosis的版圖感知和單元感知技術,結合Tessent YieldInsight的無監督機器學習技術,即Root Cause Deconvolution(簡稱為RCD),可以找到最可能的缺陷分布并移除低概率懷疑點,從而提高分辨率和準確性。目前格芯、UMC和中芯國際等都在使用該技術來快速的定位到影響良率的準確根因并快速實現良率提升。

可以看出,借助AI/ML技術,EDA工具越來越成為解決良率爬升的利器。人工智能/機器學習已經可以在先進工藝節點良率爬升、機器學習技術在標準單元變量感知型時序庫特征提取、在量產化診斷驅動良率分析中的應用、顯著縮短 ASIC/FPGA 驗證周期等自動化IC設計新領域,都能發揮強大的作用。

結語

通過各個領域的芯片廠商的創新,人工智能技術已經在很多領域顯示出其優勢,應用AI不僅可以大幅縮短芯片設計所需時間,芯片缺陷檢測的時間,降低芯片設計公司的人工成本等,還能有效滿足市場對集成電路復雜程度的需求。利用人工智能技術來幫助設計和制造芯片已經成為大勢所趨。相信在不久的未來,會有更多在芯片生產領域對人工智能技術的探索和應用。

審核編輯 :李倩

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 芯片制造
    +關注

    關注

    10

    文章

    638

    瀏覽量

    28946
  • 人工智能
    +關注

    關注

    1797

    文章

    47919

    瀏覽量

    240966
  • ai技術
    +關注

    關注

    1

    文章

    1303

    瀏覽量

    24546

原文標題:【深度】人工智能“入侵”芯片制造

文章出處:【微信號:Mentor明導,微信公眾號:西門子EDA】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    嵌入式和人工智能究竟是什么關系?

    嵌入式和人工智能究竟是什么關系? 嵌入式系統是一種特殊的系統,它通常被嵌入到其他設備或機器中,以實現特定功能。嵌入式系統具有非常強的適應性和靈活性,能夠根據用戶需求進行定制化設計。它廣泛應用于各種
    發表于 11-14 16:39

    《AI for Science:人工智能驅動科學創新》第6章人AI與能源科學讀后感

    幸得一好書,特此來分享。感謝平臺,感謝作者。受益匪淺。 在閱讀《AI for Science:人工智能驅動科學創新》的第6章后,我深刻感受到人工智能在能源科學領域中的巨大潛力和廣泛應用。這一章詳細
    發表于 10-14 09:27

    AI for Science:人工智能驅動科學創新》第4章-AI與生命科學讀后感

    很幸運社區給我一個閱讀此書的機會,感謝平臺。 《AI for Science:人工智能驅動科學創新》第4章關于AI與生命科學的部分,為我們揭示了人工智能技術在生命科學領域中的廣泛應用和深遠影響。在
    發表于 10-14 09:21

    《AI for Science:人工智能驅動科學創新》第一章人工智能驅動的科學創新學習心得

    周末收到一本新書,非常高興,也非常感謝平臺提供閱讀機會。 這是一本挺好的書,包裝精美,內容詳實,干活滿滿。 《AI for Science:人工智能驅動科學創新》這本書的第一章,作為整個著作的開篇
    發表于 10-14 09:12

    risc-v在人工智能圖像處理應用前景分析

    、RISC-V在人工智能圖像處理中的應用案例 目前,已有多個案例展示了RISC-V在人工智能圖像處理中的應用潛力。例如: Esperanto技術公司 :該公司制造的首款高性能RISC-V AI處理器旨在
    發表于 09-28 11:00

    人工智能ai 數電 模電 模擬集成電路原理 電路分析

    人工智能ai 數電 模電 模擬集成電路原理 電路分析 想問下哪些比較容易學 不過好像都是要學的
    發表于 09-26 15:24

    智能制造人工智能的區別

    智能制造人工智能在定義、技術組成、應用領域以及發展重點等方面存在明顯的區別。
    的頭像 發表于 09-15 14:27 ?1014次閱讀

    人工智能ai4s試讀申請

    目前人工智能在繪畫對話等大模型領域應用廣闊,ai4s也是方興未艾。但是如何有效利用ai4s工具助力科研是個需要研究的課題,本書對ai4s基本原理和原則,方法進行描訴,有利于總結經驗,擬按照要求準備相關體會材料??茨芊裼兄谌腴T和提高ss
    發表于 09-09 15:36

    名單公布!【書籍評測活動NO.44】AI for Science:人工智能驅動科學創新

    芯片設計的自動化水平、優化半導體制造和封測的工藝和水平、尋找新一代半導體材料等方面提供幫助。 第6章介紹了人工智能在化石能源科學研究、可再生能源科學研究、能源轉型三個方面的落地應用。 第7章從環境監測
    發表于 09-09 13:54

    報名開啟!深圳(國際)通用人工智能大會將啟幕,國內外大咖齊聚話AI

    8月28日至30日,2024深圳(國際)通用人工智能大會暨深圳(國際)通用人工智能產業博覽會將在深圳國際會展中心(寶安)舉辦。大會以“魅力AI·無限未來”為主題,致力于打造全球通用人工智能領域集產品
    發表于 08-22 15:00

    FPGA在人工智能中的應用有哪些?

    FPGA(現場可編程門陣列)在人工智能領域的應用非常廣泛,主要體現在以下幾個方面: 一、深度學習加速 訓練和推理過程加速:FPGA可以用來加速深度學習的訓練和推理過程。由于其高并行性和低延遲特性
    發表于 07-29 17:05

    5G智能物聯網課程之Aidlux下人工智能開發(SC171開發套件V2)

    人工智能 工業檢測:芯片模組外觀檢測實訓part1 11分40秒 https://t.elecfans.com/v/25609.html *附件:芯片模組外觀檢測實訓.pdf 人工智能
    發表于 05-10 16:46

    5G智能物聯網課程之Aidlux下人工智能開發(SC171開發套件V1)

    https://t.elecfans.com/v/27186.html *附件:引體向上測試案例_20240126.pdf 人工智能 工業檢測:芯片模組外觀檢測實訓part1 11分40秒 https
    發表于 04-01 10:40

    fpga芯片人工智能芯片的區別

    FPGA芯片人工智能芯片(AI芯片)在設計和應用上存在一些關鍵的區別,這些區別主要體現在它們的功能、優化目標和適用場景上。
    的頭像 發表于 03-14 17:26 ?1412次閱讀

    嵌入式人工智能的就業方向有哪些?

    嵌入式人工智能的就業方向有哪些? 在新一輪科技革命與產業變革的時代背景下,嵌入式人工智能成為國家新型基礎建設與傳統產業升級的核心驅動力。同時在此背景驅動下,眾多名企也紛紛在嵌入式人工智能領域布局
    發表于 02-26 10:17
    主站蜘蛛池模板: 狠狠狠色丁香婷婷综合久久88 | 国产精品777 | 99久热 | 亚洲国产精品第一页 | 久久天天躁狠狠躁夜夜 | 黄色美女网站在线观看 | 亚洲综合激情六月婷婷在线观看 | 男人j进女人j的视频一进一出 | 天天视频官网天天视频在线 | 波多野吉衣一区二区三区在线观看 | 免费一级特黄视频 | 一区视频在线播放 | vr性资源在线观看 | 一级一级18女人毛片 | 中国特级毛片 | 高清欧美一级在线观看 | 中文在线天堂网www 中文在线资源链接天堂 | 欧洲一级鲁丝片免费 | 黄视频网站在线看 | 国产福利萌白酱喷水视频铁牛 | 日韩第五页 | 亚洲 欧美 另类 综合 日韩 | 最新人妖shemaletube人妖 最新日本免费一区二区三区中文 | 丁香六月激情婷婷 | 激情综合色综合久久综合 | 热久久这里只有精品 | 欧美精品久久久久久久小说 | 中国一级黄色毛片 | 男生脱美女内裤内衣动态图 | 狠狠色噜噜狠狠狠狠888奇米 | a级网站| 日本高清一区二区三区不卡免费 | 亚州 色 图 综合 | 国产三级日本三级日产三 | 午夜逼逼 | 美女写真福利视频 | 亚洲一级影院 | 黄色一级一毛片 | 日本黄页网 | 免费公开在线视频 | 97se亚洲综合 |