在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

為什么ChatGPT模型大了就有上下文聯(lián)系能力?

深度學(xué)習(xí)自然語言處理 ? 來源:深度學(xué)習(xí)自然語言處理 ? 2023-04-27 09:50 ? 次閱讀

關(guān)于這點,在一篇采訪OpenAI 總裁Greg Brockman 的報道中提到了:

“Q:ChatGPT是如何產(chǎn)生的?GPT模型當(dāng)初發(fā)布時顯得有些違反常識,但卻在某種程度上掀起了最新的AI浪潮,這與你們當(dāng)初構(gòu)建這些技術(shù)時的預(yù)期是否一致?

A:ChatGPT、GPT-3、DALL·E 2這些模型看似一夜成名,但其實構(gòu)建這些模型耗費了整整五年時間,飽含多年的心血。GPT模型的構(gòu)建要從2017年發(fā)布的情感神經(jīng)元論文(Neural Sentiment Neuron: A novel Neural Architecture for Aspect-based Sentiment Analysis)說起,這篇論文的思想很新穎,不過很多人可能已經(jīng)忘了。

....“

于是好奇去查了這篇文章,很遺憾,并不是上面提到的這篇文章,而是官網(wǎng)Learning to Generate Reviews and Discovering Sentiment這篇文章。這篇文章的作者很激動、誠懇甚至有點卑微的表達了它的意外發(fā)現(xiàn),那就是單純訓(xùn)練LSTM 模型的去預(yù)測下一個單詞,模型中的某個神經(jīng)元意外對應(yīng)著情感狀態(tài),用Greg Brockman的原話說就是:

“我們發(fā)現(xiàn)LSTM模型中的單個神經(jīng)元有助于開發(fā)出SOTA情感分析分類器(sentiment analysis classifier),可以告知你文本情感(正面評價或負面評價),這一發(fā)現(xiàn)聽起來平平無奇,但我們非常清楚地知道,這是一個超越語法并轉(zhuǎn)向語義的時刻。”

關(guān)于為何會出現(xiàn)這種涌現(xiàn)行為,文章的作者提出了他的思路:

“情緒作為條件特征可能對語言建模具有很強的預(yù)測能力。(It is possible that sentiment as a conditioning feature has strong predictive capability for language modelling.)“

這個思路是典型的達爾文進化思維:

即模型本身有生成各種能力的潛力,當(dāng)某項能力有利于模型完成任務(wù)(完不成的參數(shù)被調(diào)整,等駕馭被任務(wù)淘汰),這項能力就能自發(fā)進化出來。

神經(jīng)網(wǎng)絡(luò)在訓(xùn)練的時候,采用的隨機梯度下降算法,一定程度上等效于物種的基因突變,本質(zhì)是有一定方向的隨機摸索,在強大的生存壓力下,錯誤的摸索被淘汰,久而久之,積累越來越多的正確摸索,某些高層的功能就這么涌現(xiàn)出來了。

這種思路是不同于還原論的,ChatGPT 的出現(xiàn)讓很多這個行業(yè)的老人困惑:“似乎原理上沒有任何創(chuàng)新,為何能力出現(xiàn)巨大提升呢?”“涌現(xiàn)這個詞本身就是個模棱兩可的詞,我并不知道具體的細節(jié),那就是偽科學(xué)。”“ChatGPT 具備的推理能力不過是另一種歸納,永遠無法替代演繹”。

還原論的思想講究從底層到高層的逐漸構(gòu)建,每行代碼都有清晰的含義,這樣寫出來的系統(tǒng)才叫系統(tǒng),但進化論的思想完全不同,進化論需要構(gòu)建一個萬能生成器,然后建立一個淘汰機制,對萬能生成器生成的各種可能進行篩選淘汰,這樣進化出來的系統(tǒng),就能很好的完成任務(wù),至于里面形成的微結(jié)構(gòu),那并不是重點,甚至都無法用簡單的語言描述,因為本身就是全局共同起作用的。

所謂上下文推理,不過就是給定前文,準(zhǔn)確給出后文的能力,這其實就是語言模型預(yù)訓(xùn)練時候就在做的事情,為了能做到這點,在訓(xùn)練的過程中,各種有助于提高預(yù)測能力的高層能力,都會自然而然的進化出來,所謂的高層能力,不過是一種函數(shù),而神經(jīng)網(wǎng)絡(luò)本身可以擬合一切函數(shù),同時隨機梯度下降,又讓神經(jīng)網(wǎng)絡(luò)具備了參數(shù)自動填充的能力。當(dāng)然,進化的過程中,神經(jīng)網(wǎng)絡(luò)總會嘗試找到更好的解法,比如死記硬背,但這些解法往往跟我們預(yù)期的解法不一致,這時候任務(wù)的合理構(gòu)建就很重要了,需要巧妙的設(shè)計,讓我們預(yù)期的解法是神經(jīng)網(wǎng)絡(luò)進化的唯一解。

其實換個角度想,人為什么有推理能力?人的一切能力也是進化而來的,人的各種生存壓力,配合基因的隨機突變和大自然的定向篩選,導(dǎo)致推理等能力的出現(xiàn),換句話說,當(dāng)推理能力的出現(xiàn)有助于人這個群體生存的時候,這個能力就會出現(xiàn),跟GPT 涌現(xiàn)的各種能力的原理一樣。

不要總拿著還原論思想去看待世界,幾百年前,就出現(xiàn)了進化論思想,因為進化論思想沒有寫進義務(wù)教育的教材,導(dǎo)致太多人沒有深刻理解這個工具。

審核編輯 :李倩

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4797

    瀏覽量

    102274
  • 模型
    +關(guān)注

    關(guān)注

    1

    文章

    3464

    瀏覽量

    49805
  • ChatGPT
    +關(guān)注

    關(guān)注

    29

    文章

    1584

    瀏覽量

    8657

原文標(biāo)題:為什么ChatGPT模型大了就有上下文聯(lián)系能力?

文章出處:【微信號:zenRRan,微信公眾號:深度學(xué)習(xí)自然語言處理】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    S32K在AUTOSAR中使用CAT1 ISR,是否需要執(zhí)行上下文切換?

    如果我們在 AUTOSAR 中使用 CAT1 ISR,是否需要執(zhí)行上下文切換?另外,是否需要返回指令才能跳回到作系統(tǒng)?您有沒有帶有 CAT1 ISR 的 S32K3x4 微控制器的示例?
    發(fā)表于 03-27 07:34

    DeepSeek推出NSA機制,加速長上下文訓(xùn)練與推理

    的特性,專為超快速的長上下文訓(xùn)練和推理而設(shè)計。 NSA通過針對現(xiàn)代硬件的優(yōu)化設(shè)計,顯著加快了推理速度,并大幅度降低了預(yù)訓(xùn)練成本,同時保持卓越的性能表現(xiàn)。這一機制在確保效率的同時,并未犧牲模型的準(zhǔn)確性或功能。 在廣泛的基準(zhǔn)測試、
    的頭像 發(fā)表于 02-19 14:01 ?517次閱讀

    《具身智能機器人系統(tǒng)》第7-9章閱讀心得之具身智能機器人與大模型

    的應(yīng)用。MAML算法通過二階優(yōu)化找到對任務(wù)變化敏感的模型參數(shù),實現(xiàn)快速適應(yīng)。上下文學(xué)習(xí)則引入了注意力機制,使模型能夠根據(jù)當(dāng)前場景動態(tài)調(diào)整行為策略。在預(yù)訓(xùn)練-微調(diào)范式中,我們要注意任務(wù)
    發(fā)表于 12-24 15:03

    阿里通義千問發(fā)布Qwen2.5-Turbo開源AI模型

    體驗。 Qwen2.5-Turbo在上下文長度方面實現(xiàn)重大突破,能夠擴展至100萬個tokens,這相當(dāng)于大約100萬英文單詞或150萬中文字符的容量。如此龐大的上下文長度,足以包含10部完整的小說、150小時的演講稿或300
    的頭像 發(fā)表于 11-19 18:07 ?1023次閱讀

    解鎖 GPT-4o!2024 ChatGPT Plus 代升級全攻略(附國內(nèi)支付方法)

    更快的文本生成速度和更精準(zhǔn)的圖像理解。GPT-4o 的消息額度是免費版的五倍,上下文窗口也更大。 高級語音模式 (AVM): 支持 50 多種語言,可理解語速等非語言線索
    的頭像 發(fā)表于 10-29 18:17 ?1961次閱讀

    如何評估 ChatGPT 輸出內(nèi)容的準(zhǔn)確性

    評估 ChatGPT 輸出內(nèi)容的準(zhǔn)確性是一個復(fù)雜的過程,因為它涉及到多個因素,包括但不限于數(shù)據(jù)的質(zhì)量和多樣性、模型的訓(xùn)練、上下文的理解、以及輸出內(nèi)容的邏輯一致性。以下是一些評估 ChatGPT
    的頭像 發(fā)表于 10-25 17:48 ?910次閱讀

    SystemView上下文統(tǒng)計窗口識別阻塞原因

    SystemView工具可以記錄嵌入式系統(tǒng)的運行時行為,實現(xiàn)可視化的深入分析。在新發(fā)布的v3.54版本中,增加了一項新功能:上下文統(tǒng)計窗口,提供對任務(wù)運行時統(tǒng)計信息的深入分析,使用戶能夠徹底檢查每個任務(wù),幫助開發(fā)人員識別阻塞原因。
    的頭像 發(fā)表于 08-20 11:31 ?589次閱讀

    ChatGPT-4o,國產(chǎn)大模型竟然更懂翻譯,8款大模型深度測評|AI 橫評

    、速度慢、費用高且難以準(zhǔn)確理解上下文”的問題。相比之下,AI大模型憑借其強大的學(xué)習(xí)能力和適應(yīng)性,在翻譯質(zhì)量、效率、上下文理解和多語言支持等方面表現(xiàn)出色,提供
    的頭像 發(fā)表于 07-14 08:04 ?128次閱讀
    超<b class='flag-5'>ChatGPT</b>-4o,國產(chǎn)大<b class='flag-5'>模型</b>竟然更懂翻譯,8款大<b class='flag-5'>模型</b>深度測評|AI 橫評

    鴻蒙Ability Kit(程序框架服務(wù))【應(yīng)用上下文Context】

    [Context]是應(yīng)用中對象的上下文,其提供應(yīng)用的一些基礎(chǔ)信息,例如resourceManager(資源管理)、applicationInfo(當(dāng)前應(yīng)用信息)、dir(應(yīng)用文件路徑)、area
    的頭像 發(fā)表于 06-06 09:22 ?743次閱讀
    鴻蒙Ability Kit(程序框架服務(wù))【應(yīng)用<b class='flag-5'>上下文</b>Context】

    名單公布!【書籍評測活動NO.34】大語言模型應(yīng)用指南:以ChatGPT為起點,從入門到精通的AI實踐教程

    相當(dāng)于CPU的核心數(shù),而每秒處理的 token數(shù)量則相當(dāng)于 CPU的主頻 ,以Hz為單位。這些參數(shù)決定模型的計算能力和處理速度。而語言模型上下文
    發(fā)表于 06-03 11:39

    OpenAI 深夜拋出王炸 “ChatGPT- 4o”, “她” 來了

    當(dāng)?shù)貢r間5月13日OpenAI推出ChatGPT-4o,代表人工智能向前邁出的一大步。在GPT-4turbo的強大基礎(chǔ)上,這種迭代擁有顯著的改進。在發(fā)布會的演示中,OpenAI展示該模型的高級
    發(fā)表于 05-27 15:43

    編寫一個任務(wù)調(diào)度程序,在上下文切換后遇到了一些問題求解

    大家好, 我正在編寫一個任務(wù)調(diào)度程序,在上下文切換后遇到了一些問題。 為下一個任務(wù)恢復(fù)上下文后: __builtin_tricore_mtcr_by_name(\"pcxi\"
    發(fā)表于 05-22 07:50

    OpenAI發(fā)布GPT-4o模型,支持文本、圖像、音頻信息,速度提升一倍,價格不變

     此外,該模型還具備128K的上下文記憶能力,知識截止日期設(shè)定為2023年10月。微軟方面也宣布,已通過Azure OpenAI服務(wù)提供GPT-4o的預(yù)覽版。
    的頭像 發(fā)表于 05-14 17:12 ?1040次閱讀

    【大語言模型:原理與工程實踐】大語言模型的基礎(chǔ)技術(shù)

    的特征,并且這些特征融合這些詞在當(dāng)前序列的上下文語義,因此能夠解決一詞多義的問題。憑借這種優(yōu)勢,基于動態(tài)詞向量語言模型進行預(yù)訓(xùn)練的方法被廣泛應(yīng)用于自然語言處理任務(wù)中。 經(jīng)典結(jié)構(gòu)
    發(fā)表于 05-05 12:17

    【大語言模型:原理與工程實踐】揭開大語言模型的面紗

    維基百科、網(wǎng)頁內(nèi)容和書籍等,不僅掌握語言的語法、語義和上下文信息,還能生成結(jié)構(gòu)連貫、語義合理的句子和段落。大語言模型的一個顯著特點是其龐大的參數(shù)量,已達數(shù)億甚至數(shù)十億級別。這種規(guī)模賦予模型
    發(fā)表于 05-04 23:55
    主站蜘蛛池模板: 久久久久免费 | 精品一区二区国语对白 | 亚洲国产成人精品不卡青青草原 | 国产乱码免费卡1卡二卡3卡四 | 伊人yinren6综合网色狠狠 | 4455ee日本高清免费观看 | 伊人久久大香线蕉综合爱婷婷 | 狠狠色丁香久久综合婷婷 | 夜夜骑狠狠干 | 天天做夜夜做久久做狠狠 | www你懂的| 天天躁夜夜躁狠狠躁2024 | 欧美三级视频网 | 国模龙园园私拍337p | 亚洲综合图片人成综合网 | 狠狠干狠狠操视频 | 中文字字幕码一二区 | 国产成人精品日本 | 日韩大尺度视频 | 美女黄网站人色视频免费国产 | 日本不卡在线视频高清免费 | 九九国产精品 | 欧美日本一道免费一区三区 | 乱码精品一区二区三区 | 国产精品欧美一区二区 | 狠狠色狠狠色综合日日小蛇 | 美女视频黄a全部免费看小说 | 台湾黄色毛片 | 日本人爽p大片免费看 | 国产精品 色 | 亚洲国产精品va在线观看麻豆 | 国模视频一区二区 | 男人j进女人j免费视频视频 | 五月天婷婷久久 | 色网站免费看 | 成人午夜精品久久久久久久小说 | 国产网站免费视频 | 男男之h啪肉np文 | 色天使在线视频 | 校园 春色 欧美 另类 小说 | 久久婷婷色一区二区三区 |