在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

使用合成數據實現自動駕駛攝像感知系統聚焦遠場物體

麗臺科技 ? 來源:NVIDIA英偉達 ? 2023-06-12 09:59 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

探測遠場物體(比如 100 米以外的車輛等)是自動駕駛系統在高速公路上安全運行的基礎。

在此類高速環境中,每一秒都至關重要。因此,如果能夠將以 70 英里/小時(約 113 公里/小時)速度行駛的自動駕駛車輛的感知范圍從 100 米增加到 200 米,那么車輛就會有更多的時間裕量來做出反應。

然而,對于量產乘用車中所部署的攝像感知系統來說,擴大這一范圍尤其困難。訓練攝像感知系統來探測遠場物體需要采集大量攝像數據以及真值(ground truth)標注,比如 3D 邊界框和距離等。

b1351988-08c0-11ee-962d-dac502259ad0.png

▲圖1 自動駕駛汽車離其他物體越遠,就越難執行準確的攝像感知和真值標注。(圖中的汽車未按比例繪制)

對于 200 米以外的物體,要提取這種真值數據就會變得更加困難。物體越遠,它在圖像中就越小,最終會變得只有幾像素那么大。通常情況下,會同時使用像激光雷達這樣的傳感器,以及聚合和自動標注技術來提取 3D 和距離信息,但這類在激光雷達工作范圍外的數據會變得稀疏并充滿干擾。

b15be16c-08c0-11ee-962d-dac502259ad0.png

▲圖2 攝像頭數據實例(使用 30 度視場的長焦鏡頭在高速公路場景中拍攝),放大圖顯示了只有幾個像素的遠處汽車圖像。

在開發過程中,NVIDIA DRIVE 自動駕駛汽車團隊需要解決這一具體挑戰。為此,NVIDIA 利用NVIDIA Omniverse Replicator的功能,在NVIDIA DRIVE Sim中生成遠場物體的合成真值數據。

NVIDIA DRIVE Sim是依托 Omniverse 構建而成的自動駕駛汽車仿真平臺,包含了基于物理學的傳感器模型,這些模型已通過全面的高保真傳感器仿真驗證。

通過 NVIDIA DRIVE Sim 能夠查詢仿真場景中每個物體的位置(包括在任何攝像頭分辨率下,距離車輛 400 米或 500 米的物體)并達到像素級精度。

通過將車輛位置信息與基于物理學的合成攝像頭數據相結合,即可生成感知所需的 3D 和距離真值標簽

通過將這些合成真值數據添加到現有的真實數據集中,便能夠訓練可探測遠距離汽車的網絡,并將 190 米到 200 米處汽車的 F1 得分提高 33%。

生成遠場物體的合成真值數據

為了解決準確標注的遠場數據的稀缺問題,NVIDIA 準備生成一個由近 10 萬張遠距離物體圖像組成的合成數據集以增強現有的真實數據集。圖 3 展示了在 NVIDIA DRIVE Sim 中使用 Omniverse Replicator 生成這些數據集的過程(從選擇 3D 環境,到評估深度神經網絡(DNN)性能)。

b177dd9a-08c0-11ee-962d-dac502259ad0.png

▲圖3 用戶可以使用 NVIDIA DRIVE Sim 不斷迭代合成數據,以提高深度神經網絡(DNN)的準確性。

在選擇了針對高速公路用例的 3D 環境之后,NVIDIA 設置了一輛帶有所需攝像頭傳感器的目標車輛(ego vehicle)。

NVIDIA DRIVE Sim 利用建立在 Omniverse Replicator 框架上的域隨機化 API,以編程方式改變 3D 資產的外觀、位置和運動。通過使用 ASAM OpenDRIVE 地圖 API,將車輛和障礙物放置在 100 米至 350 米以上的遠場距離上并使之具有情境感知能力。

▲ 可使用 NVIDIA DRIVE Sim 中生成的合成真值數據和 Omniverse Replicator 來訓練網絡對遠場物體的感知。

NVIDIA DRIVE Sim 動作系統能夠仿真各種有遮擋物的棘手情況,例如變道或近距離超車搶道等。這為現實世界中難以遇到的場景提供了關鍵數據。

在數據生成前的最后一步,需使用 Omniverse Replicator 的真值寫入器生成必要的標簽,包括 3D 邊界框、速度、語義標簽、物體 ID 等。

利用合成攝像頭數據提高攝像頭感知性能

這個用例中的真實訓練數據集由 100 多萬張圖像組成,圖像中包含高速公路場景中距離超過 200 米的車輛的真值標簽。如圖 4 左側所示,這些真實圖像中的汽車分布數,在距離數據采集車不到 100 米的地方達到峰值。距離更遠的物體的真值標簽十分稀疏,不足以提升感知能力。

b1a9f9ba-08c0-11ee-962d-dac502259ad0.png

▲圖4 真實世界數據集與 NVIDIA DRIVE Sim 中生成的合成數據相對于本車距離的頻率分布比較。目標車輛的前方為 0 度,后方為 180 度。角度為方位角值。

在本案例中,生成了約 9.2 萬張合成圖像以及約 37.1 萬個汽車實例和真值標簽,重點是放置在 350 米以內的遠距離車輛的分布。合成數據集中的汽車分布更傾向于 150 米以上的遠距離。通過向這個真實數據集添加約 9.2 萬張合成圖像,可將所需的有標簽的遠場物體引入到訓練分布中。

在綜合數據集上訓練完感知算法后,NVIDIA 對真實數據集進行了測試,該數據集上的汽車分布范圍在 200 米以內。根據按距離計算的感知性能改進 KPI,190 米至 200 米之間的汽車的 F1 得分(衡量模型在數據集上的準確性)最多可提高 33%。

b1cc7a12-08c0-11ee-962d-dac502259ad0.png

▲圖5 在使用/未使用 NVIDIA DRIVE Sim 的仿真圖像訓練 DNN 的情況下,障礙物檢測 DNN 的性能提高程度(F1 得分)。

總結

合成數據正在推動自動駕駛車輛開發范式的重大轉變,解鎖以前無法實現的新用例。通過使用NVIDIA DRIVE SimNVIDIA Omniverse Replicator,用戶可以設計新傳感器的原型、評估新的真值數據類型和自動駕駛車輛感知算法并仿真罕見的負面事件,所有這些都在虛擬的試驗場中進行,所耗費的時間和成本遠低于現實世界。合成數據集為自動駕駛車輛的感知提供了豐富的可能性并且在不斷發展。




審核編輯:劉清

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 傳感器
    +關注

    關注

    2564

    文章

    52793

    瀏覽量

    765465
  • 激光雷達
    +關注

    關注

    971

    文章

    4218

    瀏覽量

    192432
  • 自動駕駛系統

    關注

    0

    文章

    67

    瀏覽量

    7112

原文標題:使用合成數據實現自動駕駛攝像感知系統聚焦遠場物體

文章出處:【微信號:Leadtek,微信公眾號:麗臺科技】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    SONY FCB-CR8530,如何重塑自動駕駛視覺感知格局?

    自動駕駛技術快速發展的當下,車輛對周圍環境的精準感知是確保安全與高效運行的關鍵。凱茉銳電子SONY FCB-CR8530攝像機憑借其卓越性能,正逐漸成為自動駕駛領域視覺
    的頭像 發表于 06-25 17:54 ?104次閱讀

    自動駕駛汽車如何確保感知數據的一致性?

    自動駕駛感知傳感器概述 [首發于智駕最前沿微信公眾號]自動駕駛系統通常采用多種感知傳感器協同感知
    的頭像 發表于 06-20 09:14 ?132次閱讀
    <b class='flag-5'>自動駕駛</b>汽車如何確保<b class='flag-5'>感知</b><b class='flag-5'>數據</b>的一致性?

    新能源車軟件單元測試深度解析:自動駕駛系統視角

    。 ?自動駕駛軟件的特殊性? ? 感知層: ?激光雷達、攝像頭等傳感器數據處理算法的單元測試需覆蓋極端場景。例如,激光雷達點云濾波算法在雨雪天氣下的噪聲抑制能力需通過邊界測試驗證。某
    發表于 05-12 15:59

    技術分享 | 高逼真合成數據助力智駕“看得更準、學得更快”

    自動駕駛研發如何高效獲取海量訓練數據?高逼真合成數據技術正在提供新解法。通過仿真平臺可生成多場景、多傳感器的精準標注數據。文章詳解如何構建符合nuScenes標準的
    的頭像 發表于 04-29 10:47 ?2851次閱讀
    技術分享 | 高逼真<b class='flag-5'>合成數據</b>助力智駕“看得更準、學得更快”

    感知融合如何讓自動駕駛汽車“看”世界更清晰?

    自動駕駛技術被認為是未來交通領域的革命性變革,其目標是通過技術手段實現安全、高效、便捷的出行體驗。而在這一技術體系中,環境感知系統扮演著至關重要的角色,它不僅是
    的頭像 發表于 04-27 16:24 ?215次閱讀
    <b class='flag-5'>感知</b>融合如何讓<b class='flag-5'>自動駕駛</b>汽車“看”世界更清晰?

    技術分享 | AVM合成數據仿真驗證方案

    AVM 合成數據仿真驗證技術為自動駕駛環境感知發展帶來助力,可借助仿真軟件配置傳感器、搭建環境、處理圖像,生成 AVM 合成數據,有效加速算法驗證。然而,如何利用仿真軟件優化傳感器外參
    的頭像 發表于 03-19 09:40 ?3005次閱讀
    技術分享 | AVM<b class='flag-5'>合成數據</b>仿真驗證方案

    自動駕駛行業,分析數據標注在人工智能的重要性

    自動駕駛中,數據標注的作用尤為突出。自動駕駛系統依賴大量傳感器數據(如攝像頭、激光雷達、雷達等
    的頭像 發表于 02-08 15:43 ?813次閱讀

    自動駕駛角度解析數據標注對于人工智能的重要性

    自動駕駛中,數據標注的作用尤為突出。自動駕駛系統依賴大量傳感器數據(如攝像頭、激光雷達、雷達等
    的頭像 發表于 02-08 15:40 ?2723次閱讀
    以<b class='flag-5'>自動駕駛</b>角度解析<b class='flag-5'>數據</b>標注對于人工智能的重要性

    標貝科技:自動駕駛中的數據標注類別分享

    自動駕駛訓練模型的成熟和穩定離不開感知技術的成熟和穩定,訓練自動駕駛感知模型需要使用大量準確真實的數據。據英特爾計算,L3+級
    的頭像 發表于 11-22 15:07 ?1916次閱讀
    標貝科技:<b class='flag-5'>自動駕駛</b>中的<b class='flag-5'>數據</b>標注類別分享

    標貝科技:自動駕駛中的數據標注類別分享

    自動駕駛訓練模型的成熟和穩定離不開感知技術的成熟和穩定,訓練自動駕駛感知模型需要使用大量準確真實的數據。據英特爾計算,L3+級
    的頭像 發表于 11-22 14:58 ?3573次閱讀
    標貝科技:<b class='flag-5'>自動駕駛</b>中的<b class='flag-5'>數據</b>標注類別分享

    聊聊自動駕駛離不開的感知硬件

    自動駕駛飛速發展,繞不開感知、決策和控制決策的經典框架,而感知作為自動駕駛汽車“感官”的重要組成部分,決定了自動駕駛
    的頭像 發表于 08-23 10:18 ?1093次閱讀

    FPGA在自動駕駛領域有哪些優勢?

    。 硬件級安全: 自動駕駛系統對安全性有極高的要求。FPGA的硬件級安全性使其能夠在硬件層面實現數據加密、防篡改和防攻擊等安全功能,確保自動駕駛
    發表于 07-29 17:11

    FPGA在自動駕駛領域有哪些應用?

    數據處理和預處理,實現實時計算和反饋。 二、數據傳輸與處理FPGA在自動駕駛中扮演著數據傳輸和處理的角色。它能夠支持多種傳感器(如激光雷達
    發表于 07-29 17:09

    自動駕駛汽車傳感器有哪些

    自動駕駛汽車傳感器是實現自動駕駛功能的關鍵組件,它們通過采集和處理車輛周圍環境的信息,為自動駕駛系統提供必要的
    的頭像 發表于 07-23 16:00 ?3197次閱讀
    主站蜘蛛池模板: 97久久人人| 亚洲欧美国产五月天综合 | 亚洲午夜综合网 | 色精品一区二区三区 | 久久午夜精品视频 | 天天干夜夜做 | 特黄aa级毛片免费视频播放 | 亚洲久久久| 乱高h亲女 | 好硬好湿好爽再深一点h | 国产一级又色又爽又黄大片 | 手机午夜视频 | 黄网站色视频 | 日韩无| 欧美黄色片在线播放 | 亚洲色图视频在线 | 欧美性黑人极品1819hd | 国产综合精品久久久久成人影 | 亚洲成a人片在线观看www | 免费在线观看黄色 | 闲人综合| 黑人一区二区三区中文字幕 | 理论片毛片 | 天天添天天操 | 三级黄色一级视频 | 美女18毛片| bbbb毛片免费看 | 俺也射 | 欧美福利网| 国产午夜毛片一区二区三区 | 亚洲最新 | 狠狠色噜噜狠狠狠狠2021天天 | 伊人久久综合成人亚洲 | 夜夜夜夜操 | 国产高清在线视频 | www亚洲成人 | 狠狠干夜夜操 | 欧美午夜视频一区二区 | 五月天婷婷久久 | 黑人破乌克兰美女处 | 色视频在线观看免费 |