PCB布局的關鍵:SW節點的電場和磁場?|深圳比創達EMC(4)
PCB布局的關鍵:SW節點的電場和磁場?相信不少人是有疑問的,今天深圳市比創達電子科技有限公司就跟大家解答一下!
開關穩壓器或功率變換器電路的開關節點是關鍵的傳導路徑,在進行PCB布局時需要特別注意。該電路節點將一個或多個功率半導體開關(例如MOSFET或二極管)連接到磁能存儲設備(例如電感或變壓器繞組),其開關信號包含了快速切換的dV/dt電壓和dI/dt電流,它們很容易耦合到周圍的電路上并產生噪聲問題,可能導致PCB和系統無法滿足嚴格的電磁兼容性(EMC)要求。
本文將介紹最基本的開關節點波形,助您了解如何在PCB路由時確定適當的開關(SW)節點走線尺寸,并了解開關節點中電場(E場)和磁場(H場)產生的近場耦合效應。
PCB布局的關鍵:SW節點的電場和磁場?(4)接下來就跟著深圳比創達EMC小編一起來看下吧!
一、SW節點的電場和磁場
開關節點走線由參考平面上方的PCB走線組成,可以看作是微帶線的超短版本,尤其是在高頻下。微帶線阻抗可控,在高速傳輸線應用中用于數字、高速模擬和射頻(RF)信號的傳輸。盡管開關節點和微帶傳輸線在應用中傳導的預期信號不同,但它們的幾何結構對于時變電場和磁場仍表現出相似的特性。
圖1顯示了SW走線上的開關電壓和時變電流所產生的電場和磁場。SW走線(寬度w)放置在返回平面上方高度為h的位置。電場線從SW走線的頂部、底部和側面延伸出來。最強電場(尤其是在高頻下)集中在走線底部和邊緣最接近返回平面的位置。
圖1: 開關節點的電場和磁場
在高頻之下,電流出現在電場線終止于返回平面的地方。為了更好地控制電場并減少寄生近場耦合,應盡可能縮短返回平面和SW走線之間的距離(h),并盡可能加大SW走線與周圍電路之間的距離。
SW走線中的紋波電流會在走線周圍產生時變磁場。來自磁場的磁通量可以通過電路的互感耦合到附近的敏感電路中。與電場類似,限制磁場的最佳方法是最小化h,使返回平面盡可能靠近SW走線,同時增加SW走線與周圍電路之間的距離。靠近SW節點放置一個專用的GND返回平面將能夠提供良好的磁場抑制能力。
二、結論
對任何開關穩壓器或功率變換器電路,SW節點的布局都需要認真對待。了解SW節點波形、確定合理的SW走線尺寸并制定策略最大程度地減少近場耦合,這些都非常重要。
首先,我們要充分了解開關電壓波形、電流波形和開關頻率。然后根據最大電流需求確定SW走線寬度,并盡可能縮短SW走線長度。最后,在SW節點、周圍的IC和電路之間留出足夠的間距,以最大程度地減少近場耦合。當采用多層PCB堆疊時,始終將GND返回平面直接置于SW走線下方,并確保走線盡可能靠近GND平面。這將進一步降低來自SW節點的電場和磁場產生的近場耦合。
設計PCB布局時,遵循上述原則將有助于實現更好的EMC設計!
綜上所述,相信通過本文的描述,各位對PCB布局的關鍵:SW節點的電場和磁場都有一定了解了吧,有疑問和有不懂的想了解可以隨時咨詢深圳比創達這邊。今天就先說到這,下次給各位講解些別的內容,咱們下回見啦!也可以關注我司wx公眾平臺:深圳比創達EMC!
以上就是深圳市比創達電子科技有限公司小編給您們介紹的PCB布局的關鍵:SW節點的電場和磁場的內容,希望大家看后有所幫助!
深圳市比創達電子科技有限公司成立于2012年,總部位于深圳市龍崗區,成立至今一直專注于EMC電磁兼容領域,致力于為客戶提供最高效最專業的EMC一站式解決方案,業務范圍覆蓋EMC元件的研發、生產、銷售及EMC設計和整改。
審核編輯 黃宇
-
磁場
+關注
關注
3文章
892瀏覽量
24319 -
電場
+關注
關注
2文章
173瀏覽量
20511 -
PCB
+關注
關注
1文章
1825瀏覽量
13204
發布評論請先 登錄
相關推薦
評論