91在线观看视频-91在线观看视频-91在线观看免费视频-91在线观看免费-欧美第二页-欧美第1页

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

cos的傅里葉變換是多少

工程師鄧生 ? 來源:未知 ? 作者:劉芹 ? 2023-09-07 16:53 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

cos的傅里葉變換公式 ;

介紹

在數學中,傅立葉級數和傅立葉變換是分析周期函數和信號的兩種最重要的工具。傅立葉級數用于周期函數,而傅立葉變換用于非周期函數。在本文中,我們將重點討論余弦函數(cos)的傅立葉變換,通常稱為余弦傅立葉變換。

函數的傅立葉變換是將函數從時域映射到頻域的數學運算。換句話說,它將一個函數分解為其分量頻率。傅立葉變換有許多應用,包括信號處理、圖像分析、量子力學等。

背景

傅立葉變換定義如下:

$$F(\omega)=\int_{-\infty}^{\infty}f(t)e^{-i\omega t}dt$$

其中$f(t)$是時域中的函數,$f(\omega)$是頻域中的函數并且$\omega$是角頻率。傅立葉變換是一個復函數,這意味著它既有實部也有虛部。

余弦函數的傅立葉變換由下式給出:

$$F(\omega)=\frac{1}{2}\{\pi(\delta(\omega-\omega_0)+\delta(\omega+\omega_0))\}$$

其中$\delta$是Dirac delta函數,$\omega_0$是余弦函數的角頻率。余弦傅立葉變換是一個實函數,這意味著它沒有虛部。

起源

為了推導余弦函數的傅立葉變換,我們從傅立葉變換的定義開始:

$$F(\omega)=\int_{-\infty}^{\infty}f(t)e^{-i\omega t}dt$$

設$f(t)$為余弦函數:

$$f(t)=\cos(\omega_0 t)$$

然后傅立葉變換變為:

\begin{align*}
F(\omega)&=\int_{-\infty}^{\infty}\cos(\omega_0 t)e^{-i\omega t}dt \\
&=\frac{1}{2}\int_{-\infty}^{\infty}\{\cos[(\omega_0-\omega)t]+\cos[(\omega_0+\omega)t]\}dt \\
&=\frac{1}{2}\{\int_{-\infty}^{\infty}\cos[(\omega_0-\omega)t]dt+\int_{-\infty}^{\infty}\cos[(\omega_0+\omega)t]dt\}
\end{align*}

我們可以使用以下公式來計算積分:

$$\int_{-\infty}^{\infty}\cos(at)dt=\pi\delta(a)$$

其中$\delta$是Dirac delta函數。應用這個公式,我們得到:

$$F(\omega)=\frac{1}{2}\{\pi(\delta(\omega-\omega_0)+\delta$$

屬性

余弦函數的傅立葉變換具有在信號處理和其他應用中有用的幾個性質。

1.移位特性:

如果我們將余弦函數在時間上偏移$\tau$,則傅立葉變換在頻率上偏移$\dfrac{2\pi}{\tau$:

$$\mathcal{F}\{F(t-\tau)\}=e^{-i\omega\tau}F(\omega)$$

其中$\mathcal{F}$是傅立葉變換算子。

2.縮放特性:

如果我們用因數$\alpha$在時間上縮放余弦函數,則傅立葉變換用$\dfrac{1}{\alpha}$在頻率上縮放:

$$\mathcal{F}\{F(\alpha t)\}=\frac{1}{|\alpha |}F\left(\frac$$

3.帕西瓦爾定理:

函數的傅立葉變換的平方幅值的積分等于函數本身的平方幅值積分:

$$\int_{-\infty}^{\infty}|f(t)|^2dt=\frac{1}{2\pi}\int_{-\infity}^}\infity}|f(\omega)|^2d \omega$$

結論

總之,余弦函數的傅立葉變換是信號處理和其他應用中的一個重要工具。它允許我們將函數分解為其頻率分量,這對于分析周期函數和非周期函數很有用。傅立葉變換有幾個性質,包括移位性質、縮放性質和Parseval定理,這使它成為一個強大的數學工具。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 信號處理
    +關注

    關注

    48

    文章

    1058

    瀏覽量

    104175
  • COS
    COS
    +關注

    關注

    1

    文章

    24

    瀏覽量

    20266
  • 傅里葉變換
    +關注

    關注

    6

    文章

    443

    瀏覽量

    43190
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    傅里葉變換的原理及應用

    01什么是傅里葉變換?一句話概括:“把復雜信號拆成多個簡單正弦波的疊加。”就像把一道混合光分解成彩虹(七色光),傅里葉變換能把任何波動信號(聲音、圖像、電磁波等)拆解成不同頻率的“正弦波”組合。02
    的頭像 發表于 06-30 09:54 ?824次閱讀
    <b class='flag-5'>傅里葉變換</b>的原理及應用

    進群免費領FPGA學習資料!數字信號處理、傅里葉變換與FPGA開發等

    進群免費領FPGA學習資料啦!小編整理了數字信號處理、傅里葉變換與FPGA開發等FPGA必看資料,需要的小伙伴可以加小助手(微信:elecfans123)或進 QQ 群:913501156 群免費領
    發表于 04-07 16:41

    DFT與離散時間傅里葉變換的關系 DFT在無線通信中的應用

    DFT與離散時間傅里葉變換(DTFT)的關系 DFT(離散傅里葉變換)與DTFT(離散時間傅里葉變換)都是信號處理中的重要工具,用于將信號從時域轉換到頻域。它們之間存在一定的聯系和區別: 定義與對象
    的頭像 發表于 12-20 09:21 ?1699次閱讀

    傅立葉變換的基本概念 傅立葉變換在信號處理中的應用

    傅里葉變換的基本概念 傅里葉變換是一種數學變換,它能夠將滿足一定條件的某個函數表示成三角函數(正弦和/或余弦函數)或者它們的積分的線性組合。這種變換在不同的研究領域有多種變體形式,如連
    的頭像 發表于 12-06 16:48 ?1585次閱讀

    常見傅里葉變換錯誤及解決方法

    傅里葉變換是一種數學工具,用于將信號從時域轉換到頻域,以便分析其頻率成分。在使用傅里葉變換時,可能會遇到一些常見的錯誤。 1. 采樣定理錯誤 錯誤描述: 在進行傅里葉變換之前,沒有正確地采樣信號
    的頭像 發表于 11-14 09:42 ?2220次閱讀

    傅里葉變換的基本性質和定理

    傅里葉變換是信號處理和分析中的一項基本工具,它能夠將一個信號從時間域(或空間域)轉換到頻率域。以下是傅里葉變換的基本性質和定理: 一、基本性質 線性性質 : 傅里葉變換是線性的,即對于信號的線性組合
    的頭像 發表于 11-14 09:39 ?3302次閱讀

    經典傅里葉變換與快速傅里葉變換的區別

    經典傅里葉變換與快速傅里葉變換(FFT)在多個方面存在顯著的區別,以下是對這兩者的比較: 一、定義與基本原理 經典傅里葉變換 : 是一種將滿足一定條件的某個函數表示成三角函數(正弦和/或余弦函數
    的頭像 發表于 11-14 09:37 ?1397次閱讀

    如何實現離散傅里葉變換

    離散傅里葉變換(DFT)是將離散時序信號從時間域變換到頻率域的數學工具,其實現方法有多種,以下介紹幾種常見的實現方案: 一、直接計算法 直接依據離散傅里葉變換公式進行計算,這種方法最簡單直接,但時間
    的頭像 發表于 11-14 09:35 ?1412次閱讀

    傅里葉變換與卷積定理的關系

    傅里葉變換與卷積定理之間存在著密切的關系,這種關系在信號處理、圖像處理等領域中具有重要的應用價值。 一、傅里葉變換與卷積的基本概念 傅里葉變換 : 是一種將時間域(或空間域)信號轉換為頻率域信號
    的頭像 發表于 11-14 09:33 ?2020次閱讀

    傅里葉變換與圖像處理技術的區別

    在數字信號處理和圖像分析領域,傅里葉變換和圖像處理技術是兩個核心概念。盡管它們在實際應用中常常交織在一起,但它們在本質上有著明顯的區別。 傅里葉變換的基本原理 傅里葉變換是一種將信號從時域(或空間域
    的頭像 發表于 11-14 09:30 ?858次閱讀

    傅里葉變換在信號處理中的應用

    在現代通信和信號處理領域,傅里葉變換(FT)扮演著核心角色。它不僅幫助我們分析信號的頻率成分,還能用于濾波、壓縮和信號恢復等多種任務。 傅里葉變換的基本原理 傅里葉變換是一種將信號從時域轉換到頻域
    的頭像 發表于 11-14 09:29 ?5016次閱讀

    傅里葉變換的數學原理

    傅里葉變換的數學原理主要基于一種將函數分解為正弦和余弦函數(或復指數函數)的線性組合的思想。以下是對傅里葉變換數學原理的介紹: 一、基本原理 傅里葉級數 :對于周期性連續信號,可以將其表示為傅里葉
    的頭像 發表于 11-14 09:27 ?1860次閱讀

    在TMS320C62x上實現的擴展精度基數-4快速傅里葉變換

    電子發燒友網站提供《在TMS320C62x上實現的擴展精度基數-4快速傅里葉變換.pdf》資料免費下載
    發表于 10-28 10:03 ?0次下載
    在TMS320C62x上實現的擴展精度基數-4快速<b class='flag-5'>傅里葉變換</b>

    關于動力學方程能否用matlab進行傅里葉變換的問題。

    有沒有大神能講一下動力學方程能不能用matlab進行傅里葉變換啊?
    發表于 10-11 09:11

    數字信號處理三大變換關系包括什么

    數字信號處理是電子工程和信息科學領域的一個重要分支,它涉及到對信號進行分析、處理和轉換的方法。數字信號處理的三大變換關系是傅里葉變換、拉普拉斯變換和Z變換,它們在信號分析和系統設計中具
    的頭像 發表于 08-09 09:33 ?2648次閱讀
    主站蜘蛛池模板: 天天色综合色 | 九九人人 | 成人免费的性色视频 | 日本在线播放一区 | 深爱激情成人 | 五月婷婷丁香在线 | 午夜久久久精品 | 特黄特色大片免费播放路01 | 天天爱天天做天天干 | 国产三级中文字幕 | 天天操天天干天天 | 欧美一级黄色片在线观看 | 人人揉揉香蕉大青草 | 国产三级影院 | 四虎音影| 久久免费久久 | 国产综合在线播放 | 成人人免费夜夜视频观看 | 九色窝 | 凹凸福利视频导航 | 国产www色| 国产做爰一区二区 | 窝窝视频成人影院午夜在线 | 美女又黄又免费 | 国产婷婷综合在线精品尤物 | 伊人久久99 | 日本一区二区三区四区视频 | 日韩精品在线一区二区 | 国产无限资源 | 青草久 | 四虎永久在线观看视频精品 | 噜噜噜噜私人影院 | 在线免费观看一区二区三区 | 孩交啪啪网址 | 欧美人成在线观看 | 国产白白白在线永久播放 | 成年视频xxxxx免费播放软件 | 免费理论片在线观看播放 | 亚欧有色亚欧乱色视频 | 色午夜影院 | 天天干天天操天天添 |