1 月 5 日報道,斯丹佛大學科研團隊以 OpenAI 研發(fā)的 CLIP 神經(jīng)網(wǎng)絡為基礎,設計出攝影圖像定位項目 PIGEON,它能根據(jù)街景圖推測拍攝地所在,精準度高達 92%。
借助 PIGEON APP,僅需一張街景照,就能有效確定位置,精確度高達 92%。更有逾 40%的時間,可以將定位結(jié)果精準至離實際位置 25 公里之內(nèi)。
且據(jù)悉,PIGEON 已在與知名 GeoGuessr 玩家 Trevor Rainbolt 的角逐中取得六連勝佳績,成為 GeoGuessr 游戲中的頂尖高手,實力位列全球前 0.01%之列。
而正是GeoGuessr這樣的地理問答游戲,自 2013 年 5 月 9 日起由瑞典IT專家安東·瓦倫設立并發(fā)布,玩家將隨機置身某個谷歌街景中,僅憑有限信息猜出處。
聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。
舉報投訴
-
神經(jīng)網(wǎng)絡
-
Clip
-
OpenAI
相關推薦
在深度學習領域,神經(jīng)網(wǎng)絡模型被廣泛應用于各種任務,如圖像識別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡是兩種常見的模型。 1. 結(jié)構(gòu)差異 1.1 傳統(tǒng)
發(fā)表于 11-15 14:53
?750次閱讀
獲取設備的地理位置。
發(fā)表于 07-17 09:37
?379次閱讀
BP神經(jīng)網(wǎng)絡(Backpropagation Neural Network)是一種多層前饋神經(jīng)網(wǎng)絡,通過反向傳播算法進行訓練。它在許多領域,如模式識別、數(shù)據(jù)挖掘、預測分析等,都有廣泛的應用。本文將
發(fā)表于 07-11 10:54
?1381次閱讀
BP神經(jīng)網(wǎng)絡(Backpropagation Neural Network)是一種多層前饋神經(jīng)網(wǎng)絡,其核心思想是通過反向傳播算法來調(diào)整網(wǎng)絡中的權(quán)重和偏置,從而實現(xiàn)對輸入數(shù)據(jù)的預測或分類
發(fā)表于 07-11 10:52
?632次閱讀
神經(jīng)網(wǎng)絡模型作為一種強大的預測工具,廣泛應用于各種領域,如金融、醫(yī)療、交通等。本文將詳細介紹神經(jīng)網(wǎng)絡預測模型的構(gòu)建方法,包括模型設計、數(shù)據(jù)集準備、模型訓練、驗證與評估等步驟,并附以代碼
發(fā)表于 07-05 17:41
?805次閱讀
人工神經(jīng)網(wǎng)絡(Artificial Neural Networks, ANNs)是一種模擬人腦神經(jīng)元網(wǎng)絡的計算模型,它在許多領域,如圖像識別、語音識別、自然語言處理、預測分析等有著廣泛
發(fā)表于 07-05 09:13
?1374次閱讀
神經(jīng)網(wǎng)絡在許多領域都有廣泛的應用,如語音識別、圖像識別、自然語言處理等。然而,BP神經(jīng)網(wǎng)絡也存在一些問題,如容易陷入局部最優(yōu)解、訓練時間長、對初始權(quán)重敏感等。為了解決這些問題,研究者們提出了一些改進的BP
發(fā)表于 07-03 11:00
?870次閱讀
神經(jīng)網(wǎng)絡預測誤差大小是衡量神經(jīng)網(wǎng)絡性能的重要指標之一。本文將介紹如何評估神經(jīng)網(wǎng)絡預測誤差大小,包括誤差的定義、評估方法、誤差分析以及誤差優(yōu)化
發(fā)表于 07-03 10:41
?1310次閱讀
神經(jīng)網(wǎng)絡擬合誤差分析是一個復雜且深入的話題,涉及到多個方面,需要從數(shù)據(jù)質(zhì)量、模型結(jié)構(gòu)、訓練過程和正則化方法等多個角度進行綜合考慮。 引言 神經(jīng)網(wǎng)絡是一種強大的機器學習模型,廣泛應用于各種領域,如圖像
發(fā)表于 07-03 10:36
?680次閱讀
神經(jīng)網(wǎng)絡是一種強大的機器學習技術,可以用于建模和預測變量之間的關系。 神經(jīng)網(wǎng)絡的基本概念 神經(jīng)網(wǎng)絡是一種受人腦啟發(fā)的計算模型,由大量的節(jié)點(神經(jīng)
發(fā)表于 07-03 10:23
?838次閱讀
BP神經(jīng)網(wǎng)絡(Backpropagation Neural Network,簡稱BP網(wǎng)絡)是一種多層前饋神經(jīng)網(wǎng)絡,它通過反向傳播算法來調(diào)整網(wǎng)絡中的權(quán)重和偏置,從而實現(xiàn)對輸入數(shù)據(jù)的
發(fā)表于 07-03 09:59
?874次閱讀
1.卷積神經(jīng)網(wǎng)絡(Convolutional Neural Networks,簡稱CNN)是一種深度學習模型,廣泛應用于圖像識別、視頻分析、自然語言處理等領域。 卷積神經(jīng)網(wǎng)絡是一種前饋神經(jīng)網(wǎng)絡
發(fā)表于 07-02 16:47
?729次閱讀
地理解和解決實際問題。本文將詳細介紹神經(jīng)網(wǎng)絡在數(shù)學建模中的應用,包括神經(jīng)網(wǎng)絡的基本原理、數(shù)學建模中神經(jīng)網(wǎng)絡的應用場景、神經(jīng)網(wǎng)絡的優(yōu)缺點以及如
發(fā)表于 07-02 11:29
?1120次閱讀
神經(jīng)網(wǎng)絡在許多領域都有廣泛的應用,包括圖像識別、語音識別、自然語言處理、推薦系統(tǒng)、預測分析等。 一、人工神經(jīng)網(wǎng)絡的含義 定義:人工神經(jīng)網(wǎng)絡是
發(fā)表于 07-02 10:07
?1019次閱讀
隨著人工智能技術的飛速發(fā)展,神經(jīng)網(wǎng)絡在圖像識別領域的應用日益廣泛。神經(jīng)網(wǎng)絡以其強大的特征提取和分類能力,為圖像識別帶來了革命性的進步。本文將詳細介紹
發(fā)表于 07-01 14:19
?823次閱讀
評論