在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

平安校園視頻監(jiān)控方案 YOLOv5

燧機(jī)科技 ? 2024-07-03 22:51 ? 次閱讀

平安校園視頻監(jiān)控方案部署一臺(tái)SuiJi-AI100視頻分析服務(wù)器,平安校園視頻監(jiān)控方案使用校園視頻監(jiān)控智方案能分析儀進(jìn)行視頻取流和視頻告警事件的處理,生成告警事件和記錄,并進(jìn)行系統(tǒng)的數(shù)據(jù)展示和應(yīng)用,并可聯(lián)動(dòng)IP音箱進(jìn)行告警事件語音廣播和實(shí)時(shí)廣播喊話。

wKgaomaFZQ-ADG5jAADgocOuobQ207.png

YOLOv5算法具有4個(gè)版本,具體包括:YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x四種,本文重點(diǎn)講解YOLOv5s,其它的版本都在該版本的基礎(chǔ)上對(duì)網(wǎng)絡(luò)進(jìn)行加深與加寬。輸入端-輸入端表示輸入的圖片。該網(wǎng)絡(luò)的輸入圖像大小為608*608,該階段通常包含一個(gè)圖像預(yù)處理階段,即將輸入圖像縮放到網(wǎng)絡(luò)的輸入大小,并進(jìn)行歸一化等操作。在網(wǎng)絡(luò)訓(xùn)練階段,YOLOv5使用Mosaic數(shù)據(jù)增強(qiáng)操作提升模型的訓(xùn)練速度和網(wǎng)絡(luò)的精度;并提出了一種自適應(yīng)錨框計(jì)算與自適應(yīng)圖片縮放方法。基準(zhǔn)網(wǎng)絡(luò)-基準(zhǔn)網(wǎng)絡(luò)通常是一些性能優(yōu)異的分類器種的網(wǎng)絡(luò),該模塊用來提取一些通用的特征表示。YOLOv5中不僅使用了CSPDarknet53結(jié)構(gòu),而且使用了Focus結(jié)構(gòu)作為基準(zhǔn)網(wǎng)絡(luò)。


Neck網(wǎng)絡(luò)-Neck網(wǎng)絡(luò)通常位于基準(zhǔn)網(wǎng)絡(luò)和頭網(wǎng)絡(luò)的中間位置,利用它可以進(jìn)一步提升特征的多樣性及魯棒性。雖然YOLOv5同樣用到了SPP模塊、FPN+PAN模塊,但是實(shí)現(xiàn)的細(xì)節(jié)有些不同。
Head輸出端-Head用來完成目標(biāo)檢測(cè)結(jié)果的輸出。針對(duì)不同的檢測(cè)算法,輸出端的分支個(gè)數(shù)不盡相同,通常包含一個(gè)分類分支和一個(gè)回歸分支。YOLOv4利用GIOU_Loss來代替Smooth L1 Loss函數(shù),從而進(jìn)一步提升算法的檢測(cè)精度。

wKgaomaEm2WActzVAAFKMhgvUZM849.png

平安校園視頻監(jiān)控方案可以做到監(jiān)測(cè)到有人員在異常時(shí)間進(jìn)入校園或出學(xué)校時(shí),系統(tǒng)主動(dòng)觸發(fā)告警。當(dāng)視頻監(jiān)控智能分析系統(tǒng)檢測(cè)監(jiān)控區(qū)域是否有劇烈活動(dòng)事件。如有該類事件主動(dòng)觸發(fā)告警。系統(tǒng)還可以對(duì)學(xué)校重點(diǎn)區(qū)域進(jìn)行煙霧監(jiān)測(cè),當(dāng)發(fā)現(xiàn)現(xiàn)場(chǎng)有煙霧、濃煙時(shí)高清攝像頭自動(dòng)監(jiān)測(cè),出現(xiàn)異常自動(dòng)鎖定,主動(dòng)觸發(fā)告警,及時(shí)通知管理人員及時(shí)處理應(yīng)對(duì)。

# 解析模型 def parse_model(d, ch): # model_dict, input_channels(3) logger.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments')) anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'] na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors no = na * (nc + 5) # number of outputs = anchors * (classes + 5) layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args m = eval(m) if isinstance(m, str) else m # eval strings for j, a in enumerate(args): try: args[j] = eval(a) if isinstance(a, str) else a # eval strings except: pass n = max(round(n * gd), 1) if n > 1 else n # depth gain if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3]: c1, c2 = ch[f], args[0] # Normal # if i > 0 and args[0] != no: # channel expansion factor # ex = 1.75 # exponential (default 2.0) # e = math.log(c2 / ch[1]) / math.log(2) # c2 = int(ch[1] * ex ** e) # if m != Focus: c2 = make_divisible(c2 * gw, 8) if c2 != no else c2 # Experimental # if i > 0 and args[0] != no: # channel expansion factor # ex = 1 + gw # exponential (default 2.0) # ch1 = 32 # ch[1] # e = math.log(c2 / ch1) / math.log(2) # level 1-n # c2 = int(ch1 * ex ** e) # if m != Focus: # c2 = make_divisible(c2, 8) if c2 != no else c2 args = [c1, c2, *args[1:]] if m in [BottleneckCSP, C3]: args.insert(2, n) n = 1 elif m is nn.BatchNorm2d: args = [ch[f]] elif m is Concat: c2 = sum([ch[x if x < 0 else x + 1] for x in f]) elif m is Detect: args.append([ch[x + 1] for x in f]) if isinstance(args[1], int): # number of anchors args[1] = [list(range(args[1] * 2))] * len(f) elif m is Contract: c2 = ch[f if f < 0 else f + 1] * args[0] ** 2 elif m is Expand: c2 = ch[f if f < 0 else f + 1] // args[0] ** 2 else: c2 = ch[f if f < 0 else f + 1] m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) # module t = str(m)[8:-2].replace('__main__.', '') # module type np = sum([x.numel() for x in m_.parameters()]) # number params m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params logger.info('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist layers.append(m_) ch.append(c2) return nn.Sequential(*layers), sorted(save)

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 行為分析
    +關(guān)注

    關(guān)注

    0

    文章

    35

    瀏覽量

    1796
  • 人工智能算法
    +關(guān)注

    關(guān)注

    0

    文章

    62

    瀏覽量

    5440
  • 視頻圖像識(shí)別
    +關(guān)注

    關(guān)注

    0

    文章

    8

    瀏覽量

    2030
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    RV1126 yolov8訓(xùn)練部署教程

    YOLOv8 是 ultralytics 公司在 2023 年 1月 10 號(hào)開源的基于YOLOV5進(jìn)行更新的 下一個(gè)重大更新版本,目前支持圖像分類、物體檢測(cè)和實(shí)例分割任務(wù),鑒于Yolov5的良好表現(xiàn),
    的頭像 發(fā)表于 04-16 14:53 ?205次閱讀
    RV1126 <b class='flag-5'>yolov</b>8訓(xùn)練部署教程

    請(qǐng)問如何在imx8mplus上部署和運(yùn)行YOLOv5訓(xùn)練的模型?

    我正在從事 imx8mplus yocto 項(xiàng)目。我已經(jīng)在自定義數(shù)據(jù)集上的 YOLOv5 上訓(xùn)練了對(duì)象檢測(cè)模型。它在 ubuntu 電腦上運(yùn)行良好。現(xiàn)在我想在我的 imx8mplus 板上運(yùn)行該模型
    發(fā)表于 03-25 07:23

    YOLOv5類中rgb888p_size這個(gè)參數(shù)要與模型推理和訓(xùn)練的尺寸一致嗎?一致會(huì)達(dá)到更好的效果?

    YOLOv5類中rgb888p_size這個(gè)參數(shù)要與模型推理和訓(xùn)練的尺寸一致嗎,一致會(huì)達(dá)到更好的效果
    發(fā)表于 03-11 08:12

    yolov5轉(zhuǎn)onnx在cubeAI進(jìn)行部署,部署失敗的原因?

    第一個(gè)我是轉(zhuǎn)onnx時(shí) 想把權(quán)重文件變小點(diǎn) 就用了半精度 --half,則說17版本不支持半精度 后面則是沒有縮小的單精度 但是顯示哪里溢出了···· 也不說是哪里、、。。。 到底能不能部署yolov5這種東西啊?? 也沒看見幾個(gè)部署在這上面......................
    發(fā)表于 03-07 11:38

    【米爾RK3576開發(fā)板評(píng)測(cè)】+項(xiàng)目名稱YOLOV5目標(biāo)檢測(cè)

    /examples/yolov5/model ./download_model.sh 下載的是一個(gè)ONNX格式的神經(jīng)網(wǎng)絡(luò)模型,但發(fā)現(xiàn)它無法在瑞芯微系統(tǒng)中直接運(yùn)行。為了解決這個(gè)問題,您計(jì)劃使用特定
    發(fā)表于 02-15 13:24

    【ELF 2學(xué)習(xí)板試用】ELF2開發(fā)板(飛凌嵌入式)部署yolov5s的自定義模型

    = os.getcwd() /root/yolov5/data/voc_label.py abs_path = \'/root/yolov5/data/\' def convert(size, box
    發(fā)表于 02-04 18:15

    在RK3568教學(xué)實(shí)驗(yàn)箱上實(shí)現(xiàn)基于YOLOV5的算法物體識(shí)別案例詳解

    一、實(shí)驗(yàn)?zāi)康?本節(jié)視頻的目的是了解YOLOv5模型的用途及流程,并掌握基于YOLOV5算法實(shí)現(xiàn)物體識(shí)別的方法。 二、實(shí)驗(yàn)原理 YOLO(You Only Look Once!) YOLOv5
    發(fā)表于 12-03 14:56

    在樹莓派上部署YOLOv5進(jìn)行動(dòng)物目標(biāo)檢測(cè)的完整流程

    目標(biāo)檢測(cè)在計(jì)算機(jī)視覺領(lǐng)域中具有重要意義。YOLOv5(You Only Look One-level)是目標(biāo)檢測(cè)算法中的一種代表性方法,以其高效性和準(zhǔn)確性備受關(guān)注,并且在各種目標(biāo)檢測(cè)任務(wù)中都表現(xiàn)出
    的頭像 發(fā)表于 11-11 10:38 ?2906次閱讀
    在樹莓派上部署<b class='flag-5'>YOLOv5</b>進(jìn)行動(dòng)物目標(biāo)檢測(cè)的完整流程

    RK3588 技術(shù)分享 | 在Android系統(tǒng)中使用NPU實(shí)現(xiàn)Yolov5分類檢測(cè)

    : NPU幫助機(jī)器完成更高效的翻譯、文本分類和情感分析,推動(dòng)了自然語言處理技術(shù)的發(fā)展。 實(shí)例分享:Yolov5分類檢測(cè) 在RK3588處理器上,不僅可以基于Linux系統(tǒng)使用NPU,也可以
    發(fā)表于 10-24 10:13

    RK3588 技術(shù)分享 | 在Android系統(tǒng)中使用NPU實(shí)現(xiàn)Yolov5分類檢測(cè)-迅為電子

    RK3588 技術(shù)分享 | 在Android系統(tǒng)中使用NPU實(shí)現(xiàn)Yolov5分類檢測(cè)-迅為電子
    的頭像 發(fā)表于 08-23 14:58 ?1121次閱讀
    RK3588 技術(shù)分享 | 在Android系統(tǒng)中使用NPU實(shí)現(xiàn)<b class='flag-5'>Yolov5</b>分類檢測(cè)-迅為電子

    RK3588 技術(shù)分享 | 在Android系統(tǒng)中使用NPU實(shí)現(xiàn)Yolov5分類檢測(cè)

    : NPU幫助機(jī)器完成更高效的翻譯、文本分類和情感分析,推動(dòng)了自然語言處理技術(shù)的發(fā)展。 實(shí)例分享:Yolov5分類檢測(cè) 在RK3588處理器上,不僅可以基于Linux系統(tǒng)使用NPU,也可以
    發(fā)表于 08-20 11:13

    基于迅為RK3588【RKNPU2項(xiàng)目實(shí)戰(zhàn)1】:YOLOV5實(shí)時(shí)目標(biāo)分類

    【RKNPU2項(xiàng)目實(shí)戰(zhàn)1】:YOLOV5實(shí)時(shí)目標(biāo)分類 https://www.bilibili.com/video/BV1ZN411D7V8/?spm_id_from=333.999.0.0
    發(fā)表于 08-15 10:51

    智慧校園監(jiān)控系統(tǒng)解決方案 opencv

    智慧校園監(jiān)控系統(tǒng)解決方案適應(yīng)了社會(huì)和教育的信息化要求,同時(shí)延伸了教育的辦學(xué)空間。智慧校園監(jiān)控系統(tǒng)解決方案
    的頭像 發(fā)表于 07-03 22:57 ?568次閱讀
    智慧<b class='flag-5'>校園</b><b class='flag-5'>監(jiān)控</b>系統(tǒng)解決<b class='flag-5'>方案</b> opencv

    YOLOv5的原理、結(jié)構(gòu)、特點(diǎn)和應(yīng)用

    YOLOv5(You Only Look Once version 5)是一種基于深度學(xué)習(xí)的實(shí)時(shí)目標(biāo)檢測(cè)算法,它屬于卷積神經(jīng)網(wǎng)絡(luò)(CNN)的范疇。下面我將詳細(xì)介紹YOLOv5的原理、結(jié)構(gòu)、特點(diǎn)
    的頭像 發(fā)表于 07-03 09:23 ?9816次閱讀

    yolov5的best.pt導(dǎo)出成onnx轉(zhuǎn)化成fp32 bmodel后在Airbox上跑,報(bào)維度不匹配怎么處理?

    用官方的模型不出錯(cuò),用自己的yolov5訓(xùn)練出來的best.pt導(dǎo)出成onnx轉(zhuǎn)化成fp32 bmodel后在Airbox上跑,出現(xiàn)報(bào)錯(cuò): linaro@bm1684:~/yolov5/python
    發(fā)表于 05-31 08:10
    主站蜘蛛池模板: 小雪被老外黑人撑破了视频 | 成人青草亚洲国产 | 久久精品免费看 | 久久人人做人人玩人精品 | 爱爱的免费视频 | 日日爽视频 | 在线观看网站国产 | 天天做天天爱天天干 | 亚洲人成www在线播放 | 天堂社区在线观看 | 永久网站色视频在线观看免费 | 末发育娇小性色xxxxx视频 | 久久婷婷国产综合精品 | 五月激情五月婷婷 | 香蕉成人999视频 | 欧洲国产精品精华液 | 久青草国产高清在线视频 | 久久精品亚洲精品国产欧美 | 九九九精品午夜在线观看 | 人人爱人人插 | www.色多多 | 手机在线看片国产日韩生活片 | 九色在线| 午夜在线视频网站 | 色多多官网 | 欧美成人一区二区三区在线电影 | 美女扒开尿口让男人30视频 | a成人在线| 欧美亚洲h在线一区二区 | 国产精品无码永久免费888 | 国产男女交性视频播放免费bd | 免费人成黄页在线观看1024 | 欧美性69| 女人被狂躁视频免费网站 | 亚洲久久在线 | 免费在线观看一级片 | 六月丁香婷婷激情国产 | 免费看 s色 | 成年视频xxxxx免费播放软件 | 免费看污黄视频软件 | 免费看吻胸亲嘴激烈网站 |