在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

提高IT運(yùn)維效率,深度解讀京東云基于自然語言處理的運(yùn)維日志異常檢測(cè)AIOps落地實(shí)踐

京東云 ? 來源:jf_75140285 ? 作者:jf_75140285 ? 2025-05-22 16:39 ? 次閱讀

基于NLP技術(shù)對(duì)運(yùn)維日志聚類,從日志角度快速發(fā)現(xiàn)線上業(yè)務(wù)問題

日志在IT行業(yè)中被廣泛使用,日志的異常檢測(cè)對(duì)于識(shí)別系統(tǒng)的運(yùn)行狀態(tài)至關(guān)重要。解決這一問題的傳統(tǒng)方法需要復(fù)雜的基于規(guī)則的有監(jiān)督方法和大量的人工時(shí)間成本。我們提出了一種基于自然語言處理技術(shù)運(yùn)維日志異常檢測(cè)模型。為了提高日志模板向量的質(zhì)量,我們改進(jìn)特征提取,模型中使用了詞性(PoS)和命名實(shí)體識(shí)別(NER)技術(shù),減少了規(guī)則的參與,利用 NER 的權(quán)重向量對(duì)模板矢量進(jìn)行了修改,分析日志模板中每個(gè)詞的 PoS 屬性,從而減少了人工標(biāo)注成本,有助于更好地進(jìn)行權(quán)重分配。為了修改模板向量,引入了對(duì)日志模板標(biāo)記權(quán)重的方法,并利用深度神經(jīng)網(wǎng)絡(luò)(DNN)實(shí)現(xiàn)了基于模板修正向量的最終檢測(cè)。我們的模型在三個(gè)數(shù)據(jù)集上進(jìn)行了有效性測(cè)試,并與兩個(gè)最先進(jìn)的模型進(jìn)行了比較,評(píng)估結(jié)果表明,我們的模型具有更高的準(zhǔn)確度。

日志是記錄操作系統(tǒng)等 IT 領(lǐng)域中的操作狀態(tài)的主要方法之一,是識(shí)別系統(tǒng)是否處于健康狀態(tài)的重要資源。因此,對(duì)日志做出準(zhǔn)確的異常檢測(cè)非常重要。日志異常一般有三種類型,即異常個(gè)體日志、異常日志序列和異常日志定量關(guān)系。我們主要是識(shí)別異常個(gè)體日志,即包含異常信息的日志。

一般來說,日志的異常檢測(cè)包括三個(gè)步驟: 日志解析、特征提取和異常檢測(cè)。解析工具提取的模板是文本數(shù)據(jù),應(yīng)將其轉(zhuǎn)換為數(shù)字?jǐn)?shù)據(jù),以便于輸入到模型中。為此,特征提取對(duì)于獲得模板的數(shù)字表示是必要的。在模板特征提取方面,業(yè)界提出了多種方法來完成這一任務(wù)。獨(dú)熱編碼是最早和最簡(jiǎn)單的方法之一,可以輕松地將文本模板轉(zhuǎn)換為便于處理的數(shù)字表示,但是獨(dú)熱編碼是一種效率較低的編碼方法,它占用了太多的儲(chǔ)存空間來形成一個(gè)零矢量,而且在使用獨(dú)熱編碼時(shí),忽略了日志模板的語義信息。除了這種方便的編碼方法外,越來越多的研究人員應(yīng)用自然語言處理(NLP)技術(shù)來實(shí)現(xiàn)文本的數(shù)字轉(zhuǎn)換,其中包括詞袋,word2vec 等方法。雖然上述方法可以實(shí)現(xiàn)從文本數(shù)據(jù)到數(shù)字?jǐn)?shù)據(jù)的轉(zhuǎn)換,但在日志異常檢測(cè)方面仍然存在一些缺陷。詞袋和 word2vec 考慮到模板的語義信息,可以有效地獲得單詞向量,但是它們?nèi)狈紤]模板中出現(xiàn)的每個(gè)模版詞的重要性調(diào)節(jié)能力。此外,深度神經(jīng)網(wǎng)絡(luò)(DNN)也被用于模板的特征提取。

我們的模型主要改進(jìn)特征提取,同時(shí)考慮每個(gè)標(biāo)記的模版詞語義信息和權(quán)重分配,因?yàn)闃?biāo)記結(jié)果對(duì)最終檢測(cè)的重要性不同。我們利用兩種自然語言處理技術(shù)即PoS和命名實(shí)體識(shí)別(NER),通過以下步驟實(shí)現(xiàn)了模板特征的提取。具體來說,首先通過 FT-Tree 將原始日志消息解析為日志模板,然后通過 PoS 工具對(duì)模板進(jìn)行處理,獲得模板中每個(gè)詞的 PoS 屬性,用于權(quán)重向量計(jì)算。同時(shí),通過 word2vec 將模板中的標(biāo)記向量化為初始模板向量,并利用權(quán)值向量對(duì)初始模板向量進(jìn)行進(jìn)一步修改,那些重要的模版詞的 PoS屬性將有助于模型更好地理解日志含義。對(duì)于標(biāo)記完 PoS 屬性的模版詞,詞對(duì)異常信息識(shí)別的重要性是不同的,我們使用 NER 在模版的 PoS屬性中找出重要性高的模版詞,并且被 NER 識(shí)別為重要的模版詞將獲得更大的權(quán)重。然后,將初始模板向量乘以這個(gè)權(quán)重向量,生成一個(gè)復(fù)合模板向量,輸入到DNN模型中,得到最終的異常檢測(cè)結(jié)果。為了減少對(duì)日志解析的人力投入,并為權(quán)重計(jì)算做準(zhǔn)備,我們采用了 PoS 分析方法,在不引入模板提取規(guī)則的情況下,對(duì)每個(gè)模版詞都標(biāo)記一個(gè) PoS 屬性。

解析模板的特征提取過程是異常檢測(cè)的一個(gè)重要步驟,特征提取的主要目的是將文本格式的模板轉(zhuǎn)換為數(shù)字向量,業(yè)界提出了各種模板特征提取方法:

One-hot 編碼:在 DeepLog 中,來自一組 k 模板ti,i∈[0,k)的每個(gè)輸入日志模板都被編碼為一個(gè)One-hot編碼。在這種情況下,對(duì)于日志的重要信息ti 構(gòu)造了一個(gè)稀疏的 k 維向量 V = [ v0,v1,... ,vk-1] ,并且滿足j不等于i, j∈[0,k),使得對(duì)于所有vi= 1和 vj = 0。

自然語言處理(NLP):為了提取日志模板的語義信息并將其轉(zhuǎn)換為高維向量,LogRobust 利用現(xiàn)成的 Fast-Text 算法從英語詞匯中提取語義信息,能夠有效地捕捉自然語言中詞之間的內(nèi)在關(guān)系(即語義相似性) ,并將每個(gè)詞映射到一個(gè) k 維向量。使用 NLP 技術(shù)的各種模型也被業(yè)界大部分人使用,如 word2vec 和 bag-of-words 。

深度神經(jīng)網(wǎng)絡(luò)(DNN):與使用 word2vec 或 Fast-Text 等細(xì)粒度單元的自然語言處理(NLP)不同,LogCNN 生成基于29x128codebook的日志嵌入,該codebook是一個(gè)可訓(xùn)練的層,在整個(gè)訓(xùn)練過程中使用梯度下降進(jìn)行優(yōu)化。

Template2Vec:是一種新方法,基于同義詞和反義詞來有效地表示模板中的詞。在 LogClass 中,將經(jīng)典的加權(quán)方法 TF-IDF 改進(jìn)為 TF-ILF,用逆定位頻率代替逆文檔頻率,實(shí)現(xiàn)了模板的特征構(gòu)造。

一段原始日志消息是一個(gè)半結(jié)構(gòu)化的文本,比如一個(gè)從在線支付應(yīng)用程序收集的錯(cuò)誤日志讀取為: HttpUtil-request 連接失敗,Read timeout at jave.net。它通常由兩部分組成,變量和常量(也稱為模板)。對(duì)于識(shí)別個(gè)體日志的異常檢測(cè),目的是從原始日志解析的模板中識(shí)別是否存在異常信息。我們的模型使用 PoS 分析以及 NER 技術(shù)來進(jìn)行更精確和省力的日志異常檢測(cè)。PoS 有助于過濾標(biāo)記有不必要的 PoS 屬性的模版詞,NER的目標(biāo)是將重要性分配給所有標(biāo)記為重要的 PoS 屬性的模版詞。然后通過模板向量和權(quán)向量的乘積得到復(fù)合模板向量。

我們的日志異常檢測(cè)模型包括六個(gè)步驟,即模板解析、 PoS分析、初始向量構(gòu)造、基于NER的權(quán)重計(jì)算、復(fù)合向量和最終檢測(cè)。檢測(cè)的整個(gè)過程如圖1所示:

wKgZPGgu4quAFNMLAAGcFpIi-Rc194.png

第一步:模板解析

初始日志是半結(jié)構(gòu)化的文本,它們包含一些不必要的信息,可能會(huì)造成混亂或阻礙日志檢測(cè)。因此,需要預(yù)處理來省略變量,比如一些數(shù)字或符號(hào),并提取常量,即模板。以前面提到的日志消息為例,原始日志HttpUtil-request 連接[wx/v1/pay/prepay]的模板失敗,Read timeout at jave.net。可以提取為: HttpUtil 請(qǐng)求連接 * 失敗讀取時(shí)間為 * 。我們使用簡(jiǎn)單而有效的方法 FT-Tree 來實(shí)現(xiàn)日志解析,我們沒有引入復(fù)雜的基于規(guī)則的規(guī)則來去除那些不太重要的標(biāo)記,比如停止詞。

第二步:PoS 分析

上一步的模版解析結(jié)果只有英語單詞、短語和一些非母語單詞保留在解析好的模板中,這些模版詞具有各種 PoS 屬性,例如 VB 和 NN。根據(jù)我們對(duì)大量日志模板的觀察,一些 PoS 屬性對(duì)于模型理解模板所傳達(dá)的意義很重要,而其他屬性可以忽略。如圖3所示,解析模板中的單詞“ at”在理論上是不必要的,相應(yīng)的 PoS 屬性“ IN”也是不必要的,即使去掉 IN 的標(biāo)記,我們?nèi)匀豢梢耘袛嗄0迨欠裾!R虼耍谖覀兊玫搅?PoS 向量之后,我們可以通過去掉那些具有特定 PoS 屬性的模版詞來簡(jiǎn)化模板。剩余的模版詞對(duì)于模型更好地理解模板內(nèi)容非常重要。

wKgZO2gu4q2AWveWAAX9AD1mZHo788.png

第三步:初始模板向量構(gòu)造

在獲得 PoS 矢量的同時(shí),模板也被編碼成數(shù)字向量。為了考慮模板的語義信息,在模型中使用 word2vec 來構(gòu)造模板的初始向量。該初始向量將與下一步得到的權(quán)重向量相乘,得到模板的復(fù)合優(yōu)化表示。

第四步: 權(quán)重分析

首先對(duì)模板中的模版詞進(jìn)行 PoS 分析處理,剔除無意義的模版詞。至于其余的模版詞,有些是關(guān)鍵的,用于傳達(dá)基本信息,如服務(wù)器操作、健康狀態(tài)等。其他的可能是不太重要的信息,比如動(dòng)作的對(duì)象、警告級(jí)別等等。為了加大模型對(duì)這些重要模版詞的學(xué)習(xí)力度,我們構(gòu)造了一個(gè)權(quán)重向量來突出這些重要的模版詞。為此,我們采用了 NER 技術(shù),通過輸入已定義的重要實(shí)體,學(xué)習(xí)挑選標(biāo)記為重要實(shí)體的所有模版詞。該過程如圖所示:

wKgZPGgu4q6AcxjHAAJDE6jLBuQ142.png

CRF 是 NER 通常使用的工具,它也被用于我們的模型識(shí)別模版詞的重要性。也就是說,通過向模型提供標(biāo)記為重要的模版詞,模型可以學(xué)習(xí)識(shí)別那些未標(biāo)注的日志的重要的模版詞。一旦模板中的模版詞被 CRF 識(shí)別出來,相應(yīng)的位置就會(huì)賦予一個(gè)權(quán)重值(2.0)。因此,我們得到一個(gè)權(quán)向量 W。

第五步:復(fù)合向量

在獲得權(quán)重向量 W 之后,通過將初始向量 V’乘以權(quán)重向量 W,可以得到一個(gè)表示模板的復(fù)合優(yōu)化向量 V。重要的模版詞分配更大權(quán)重,而其他的模版詞分配更小的。

第六步:異常檢測(cè)

將第五步得到的復(fù)合矢量 v 輸入到最終全連接層中,以便進(jìn)行異常檢測(cè)。完全連通層的輸出分別為0或1,表示正常或異常。

?模型評(píng)估

我們通過實(shí)驗(yàn)驗(yàn)證了該模型對(duì)日志異常檢測(cè)的改進(jìn)效果。采用了兩個(gè)公共數(shù)據(jù)集,以及一套我們內(nèi)部數(shù)據(jù)集,來驗(yàn)證我們模型的實(shí)用性。我們將自己的結(jié)果與業(yè)界針對(duì)日志異常檢測(cè)提出的兩個(gè)Deeplog 和 LogClass模型進(jìn)行了比較。

CANet 的框架是用 PyTorch 構(gòu)建的,我們?cè)?5個(gè)訓(xùn)練周期中選擇新加坡隨機(jī)梯度下降(SGD)作為優(yōu)化器。學(xué)習(xí)速度設(shè)定為2e4。所有的超參數(shù)都是從頭開始訓(xùn)練的。

(1)數(shù)據(jù)集:我們選取了兩套公共集和一套公司內(nèi)部數(shù)據(jù)集進(jìn)行模型評(píng)估,BGL 和 HDFS 都是用于日志分析的兩個(gè)常用公共數(shù)據(jù)集:HDFS:是從運(yùn)行基于 Hadoop 的作業(yè)的200多個(gè) Amazon EC2節(jié)點(diǎn)收集的。它由11,175,629條原始日志消息組成,16,838條被標(biāo)記為“異常”。BGL:收集自 BlueGene/L 超級(jí)計(jì)算機(jī)系統(tǒng) ,包含4,747,963條原始日志消息,其中348,469條是異常日志。每條日志消息都被手動(dòng)標(biāo)記為異常或者正常。數(shù)據(jù)集 A:是從我們公司內(nèi)部收集來進(jìn)行實(shí)際驗(yàn)證的數(shù)據(jù)集。它包含915,577條原始日志消息和210,172條手動(dòng)標(biāo)記的異常日志。

(2)base模型:我們將自己的模型在三個(gè)數(shù)據(jù)集上,與兩個(gè)業(yè)界最先進(jìn)的模型(DeepLog和LogClass)進(jìn)行比較:DeepLog:是一個(gè)基于深度神經(jīng)網(wǎng)絡(luò)的模型,利用長短期記憶(LSTM)來實(shí)現(xiàn)檢測(cè)。DeepLog 采用一次性編碼作為模板向量化方法。LogClass:LogClass 提出了一種新的方法——逆定位頻率(ILF) ,在特征構(gòu)造中對(duì)日志文字進(jìn)行加權(quán)。這種新的加權(quán)方法不同于現(xiàn)有的反文檔頻率(IDF)加權(quán)方法。

(3)模型評(píng)估結(jié)果:我們從Precision、Recall和F1-score三個(gè)方面評(píng)估兩個(gè)base模型和我們的模型的異常檢測(cè)效果,在 HDFS 數(shù)據(jù)集上,我們的模型獲得了最高的 F1得分0.981,此外,我們的模型在召回方面也表現(xiàn)最好。LogClass 在Precision上取得了最好的成績,比我們的稍微高一點(diǎn)。在第二套數(shù)據(jù)集BGL上,我們的模型在召回率Recall(0.991)和 F1-score (0.986)方面表現(xiàn)最好,但在Precision上略低于 LogClass。在第三套數(shù)據(jù)集 A 上三個(gè)模型的性能,我們的模型實(shí)現(xiàn)了最佳性能,其次是 LogClass。

wKgZO2gu4q-APdg-AAOKVt8ONsg086.png

wKgZPGgu4rCAE8xqAAD6_vIEZmA627.png

在所有的數(shù)據(jù)集中,我們的模型具有最好的 F1得分和最高的召回率,這意味著我們的模型造成的不確定性更小。

?Natural Language Processing-based Model for Log Anomaly Detection. SEAI.

?ieeexplore檢索:https://ieeexplore.ieee.org/abstract/document/9680175

wKgZO2gu4rGAYSEmAAMCJ_U9umg130.png

wKgZO2gu4rOALZG1AAbpV8J0J6U076.jpg

?Themis智能運(yùn)維平臺(tái)智能文本分析功能視圖:(http://jdtops.jd.com/)

wKgZO2gu4raAMMDTAAjdroK8RAw109.png

?團(tuán)隊(duì)介紹:

京東科技從2018年開始建設(shè)智能運(yùn)維,基于京東多年一線運(yùn)維經(jīng)驗(yàn),以大數(shù)據(jù)和人工智能技術(shù)為抓手,形成以應(yīng)用為中心的一體化智能運(yùn)維解決方案。利用京東內(nèi)部歷年大促場(chǎng)景的數(shù)據(jù)積累,對(duì)算法進(jìn)行不斷的優(yōu)化訓(xùn)練,在監(jiān)控、數(shù)據(jù)庫、網(wǎng)絡(luò)、資源調(diào)度等多個(gè)縱向場(chǎng)景取得突破,可移植性強(qiáng),自研通用化智能基線算法學(xué)件10+,自研通用化異常檢測(cè)算法學(xué)件10+,場(chǎng)景化異常檢測(cè)算法方案5+,具備多種自研通用化根因定位算法學(xué)件,可以自動(dòng)觸發(fā)多維實(shí)時(shí)根因定位 ,從上萬維度屬性值中定位到根因維度,自研5種以上增量式學(xué)習(xí)模板提取與相關(guān)分析算法學(xué)件,運(yùn)維知識(shí)圖譜內(nèi)涵蓋節(jié)點(diǎn)30W+,以應(yīng)用為中心向外延伸出的圖譜關(guān)系達(dá)90W+,賦能根因分析快速精準(zhǔn)查詢調(diào)用。發(fā)表IEEE國際會(huì)議論文(AIOps方向)8篇,申請(qǐng)40余項(xiàng)智能運(yùn)維專利。

審核編輯 黃宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 自然語言處理
    +關(guān)注

    關(guān)注

    1

    文章

    628

    瀏覽量

    14056
  • IT運(yùn)維
    +關(guān)注

    關(guān)注

    0

    文章

    5

    瀏覽量

    3171
  • AIOps
    +關(guān)注

    關(guān)注

    0

    文章

    9

    瀏覽量

    1247
  • 京東云
    +關(guān)注

    關(guān)注

    0

    文章

    172

    瀏覽量

    122
收藏 人收藏

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    AI集成運(yùn)管理平臺(tái)的架構(gòu)與核心構(gòu)成解析

    在數(shù)字化轉(zhuǎn)型浪潮下,企業(yè)IT基礎(chǔ)設(shè)施規(guī)模不斷擴(kuò)大,系統(tǒng)架構(gòu)日益復(fù)雜,傳統(tǒng)依賴人工的運(yùn)模式面臨著響應(yīng)速度慢、故障定位難、運(yùn)成本高等諸多挑戰(zhàn)。Gartner在2016年首次提出
    的頭像 發(fā)表于 06-12 17:04 ?105次閱讀

    提高IT運(yùn)效率深度解讀京東AIOps落地實(shí)踐異常檢測(cè)篇)

    基于深度學(xué)習(xí)對(duì)運(yùn)時(shí)序指標(biāo)進(jìn)行異常檢測(cè),快速發(fā)現(xiàn)線上業(yè)務(wù)問題 時(shí)間序列的異常
    的頭像 發(fā)表于 05-22 16:38 ?350次閱讀
    <b class='flag-5'>提高</b>IT<b class='flag-5'>運(yùn)</b><b class='flag-5'>維</b><b class='flag-5'>效率</b>,<b class='flag-5'>深度</b><b class='flag-5'>解讀</b><b class='flag-5'>京東</b><b class='flag-5'>云</b><b class='flag-5'>AIOps</b><b class='flag-5'>落地</b><b class='flag-5'>實(shí)踐</b>(<b class='flag-5'>異常</b><b class='flag-5'>檢測(cè)</b>篇)

    儲(chǔ)能運(yùn)平臺(tái)在換電站的應(yīng)用 有效提高運(yùn)效率

    儲(chǔ)能運(yùn)平臺(tái)在換電站的應(yīng)用是新能源汽車能源補(bǔ)給領(lǐng)域的重要?jiǎng)?chuàng)新,通過數(shù)字化技術(shù)優(yōu)化換電站的能源管理、運(yùn)
    的頭像 發(fā)表于 03-19 14:00 ?380次閱讀

    數(shù)據(jù)驅(qū)動(dòng)的光伏運(yùn):平臺(tái)如何提升發(fā)電效率

    ? ? 近年來,光伏行業(yè)的迅猛增長促使光伏電站的規(guī)模持續(xù)擴(kuò)張,從而使得運(yùn)管理的核心地位愈發(fā)顯著。以往依賴人工進(jìn)行的巡檢以及粗放的管理手段,不僅效率低下,而且易于忽略潛在隱患,造成發(fā)電量的減少和成本
    的頭像 發(fā)表于 02-21 10:49 ?357次閱讀
    數(shù)據(jù)驅(qū)動(dòng)的光伏<b class='flag-5'>運(yùn)</b><b class='flag-5'>維</b>:平臺(tái)如何提升發(fā)電<b class='flag-5'>效率</b>?

    智慧光伏運(yùn)管理系統(tǒng)助力光伏運(yùn)降本增效

    數(shù)據(jù),對(duì)異常情況進(jìn)行預(yù)警和診斷,并采取相應(yīng)的措施進(jìn)行修復(fù)和維護(hù),從而提高光伏電站的效率和可靠性,降低運(yùn)成本,延長設(shè)備壽命。 智慧光伏
    的頭像 發(fā)表于 01-03 17:00 ?460次閱讀
    智慧光伏<b class='flag-5'>運(yùn)</b><b class='flag-5'>維</b>管理系統(tǒng)助力光伏<b class='flag-5'>運(yùn)</b><b class='flag-5'>維</b>降本增效

    分布式光伏運(yùn)平臺(tái)助力光伏電站運(yùn)營

    分布式光伏運(yùn)平臺(tái)能夠?qū)崿F(xiàn)對(duì)光伏電站的實(shí)時(shí)監(jiān)測(cè)、數(shù)據(jù)分析、故障診斷和運(yùn)管理等功能,提高發(fā)電
    的頭像 發(fā)表于 12-09 16:22 ?733次閱讀
    分布式光伏<b class='flag-5'>運(yùn)</b><b class='flag-5'>維</b><b class='flag-5'>云</b>平臺(tái)助力光伏電站運(yùn)營

    自然語言處理與機(jī)器學(xué)習(xí)的關(guān)系 自然語言處理的基本概念及步驟

    Learning,簡(jiǎn)稱ML)是人工智能的一個(gè)核心領(lǐng)域,它使計(jì)算機(jī)能夠從數(shù)據(jù)中學(xué)習(xí)并做出預(yù)測(cè)或決策。自然語言處理與機(jī)器學(xué)習(xí)之間有著密切的關(guān)系,因?yàn)闄C(jī)器學(xué)習(xí)提供了一種強(qiáng)大的工具,用于從大量文本數(shù)據(jù)中提取模式和知識(shí),從而提高NLP系
    的頭像 發(fā)表于 12-05 15:21 ?1846次閱讀

    自然語言處理與機(jī)器學(xué)習(xí)的區(qū)別

    是計(jì)算機(jī)科學(xué)、人工智能和語言學(xué)領(lǐng)域的分支,它致力于使計(jì)算機(jī)能夠理解、解釋和生成人類語言。NLP的目標(biāo)是縮小人類語言和計(jì)算機(jī)之間的差距,使計(jì)算機(jī)能夠處理和生成
    的頭像 發(fā)表于 11-11 10:35 ?1445次閱讀

    光伏電站運(yùn)管理系統(tǒng)與傳統(tǒng)運(yùn)模式對(duì)比分析

    ?????? 光伏電站運(yùn)管理系統(tǒng)與傳統(tǒng)運(yùn)模式對(duì)比分析 ?????? 隨著全球?qū)稍偕茉吹年P(guān)注度不斷提升,光伏電站作為綠色能源的重要組成部分,其
    的頭像 發(fā)表于 11-08 16:14 ?762次閱讀
    光伏電站<b class='flag-5'>運(yùn)</b><b class='flag-5'>維</b>管理系統(tǒng)與傳統(tǒng)<b class='flag-5'>運(yùn)</b><b class='flag-5'>維</b>模式對(duì)比分析

    設(shè)備數(shù)據(jù)接入運(yùn)管理平臺(tái)實(shí)現(xiàn)什么功能

    方式,還為企業(yè)帶來了前所未有的運(yùn)效率與智能化水平。本文將深入探討設(shè)備數(shù)據(jù)接入運(yùn)管理
    的頭像 發(fā)表于 09-24 14:14 ?495次閱讀

    儲(chǔ)能運(yùn)平臺(tái)如何優(yōu)化充放電策略

    潛在問題。 例如,當(dāng)電池溫度異常升高時(shí),平臺(tái)會(huì)立即發(fā)出警報(bào),運(yùn)人員可以迅速采取措施,防止電池過熱引發(fā)安全事故。 遠(yuǎn)程控制 支持遠(yuǎn)程操作,可實(shí)現(xiàn)對(duì)儲(chǔ)能設(shè)備的遠(yuǎn)程啟停、參數(shù)調(diào)整等功能。這大大提高
    的頭像 發(fā)表于 08-26 17:59 ?1364次閱讀
    儲(chǔ)能<b class='flag-5'>運(yùn)</b><b class='flag-5'>維</b>平臺(tái)如何優(yōu)化充放電策略

    光伏電站運(yùn)管理系統(tǒng)實(shí)現(xiàn)電站智能運(yùn)與管理

    的運(yùn)營效率和發(fā)電量,陜西公眾智能監(jiān)測(cè)自主研發(fā)了光伏電站運(yùn)管理系統(tǒng),幫助光伏電站實(shí)現(xiàn)智能化運(yùn)與管理,
    的頭像 發(fā)表于 08-16 16:48 ?870次閱讀
    光伏電站<b class='flag-5'>運(yùn)</b><b class='flag-5'>維</b>管理系統(tǒng)實(shí)現(xiàn)電站智能<b class='flag-5'>運(yùn)</b><b class='flag-5'>維</b>與管理

    自然語言處理模式的優(yōu)點(diǎn)

    得到了廣泛的應(yīng)用,如搜索引擎、語音助手、機(jī)器翻譯、情感分析等。 1. 提高信息獲取效率 自然語言處理技術(shù)能夠快速地從大量文本數(shù)據(jù)中提取關(guān)鍵信息,幫助用戶節(jié)省查找和篩選信息的時(shí)間。例如,
    的頭像 發(fā)表于 07-03 14:24 ?1190次閱讀

    神經(jīng)網(wǎng)絡(luò)在自然語言處理中的應(yīng)用

    旨在探討神經(jīng)網(wǎng)絡(luò)在自然語言處理中的應(yīng)用,包括其背景、核心概念、算法原理、實(shí)踐案例以及未來發(fā)展趨勢(shì)和挑戰(zhàn)。
    的頭像 發(fā)表于 07-01 14:09 ?872次閱讀

    集成運(yùn)管理系統(tǒng)的應(yīng)用價(jià)值

    限于以下幾點(diǎn): 1.提高效率: 集成運(yùn)可以消除部門之間的信息孤島,實(shí)現(xiàn)信息共享和協(xié)作,進(jìn)而提高工作效率。各個(gè)部門之間可以更快速地共享數(shù)據(jù)、資源和信息,減少重復(fù)勞動(dòng),
    的頭像 發(fā)表于 06-20 14:42 ?483次閱讀
    主站蜘蛛池模板: 国产精品亚洲一区二区三区在线播放 | 亚洲一区小说区中文字幕 | 亚洲成人综合在线 | 亚欧美视频 | 清纯唯美亚洲综合一区 | 久在操 | 美女被玩 | 一级做a爱免费观看视频 | 日韩一级特黄 | 最近2018年在线中文字幕高清 | 午夜影院毛片 | 欧美成人天天综合天天在线 | 国产精品二区三区免费播放心 | 欧美一级高清黄图片 | 老湿司午夜爽爽影院榴莲视频 | 97人人揉人人捏人人添 | 色综合天天射 | 亚洲国产精品第一页 | h网站在线免费观看 | 久久久久88色偷偷免费 | 最新色视频 | 亚洲 欧美 中文字幕 | 亚洲伊人成综合成人网 | 久久亚洲国产精品五月天 | 一级特黄国产高清毛片97看片 | 又潮又黄的叫床视频 | 黄h网站| 欧美成人xxxx | 女a男o肉文 | 色视频免费版高清在线观看 | 天天射日| 伊人精品成人久久综合欧美 | 日韩卡1卡2卡三卡四卡二卡免 | 亚洲天堂第一页 | 国产精品嫩草影院一二三区入口 | 九九美剧| 欧美国产黄色 | 综合色亚洲 | 亚洲国产成人在线 | 性生交大片免费一级 | 国产香港日本三级在线观看 |