在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

深度學(xué)習(xí)是如何從概念發(fā)展為現(xiàn)實(shí)的?

EdXK_AI_News ? 來(lái)源:未知 ? 作者:胡薇 ? 2018-05-31 10:06 ? 次閱讀

在二十世紀(jì)五十年代就存在深度學(xué)習(xí)的概念了。麥肯錫全球研究院發(fā)文簡(jiǎn)要回顧了深度學(xué)習(xí)是如何從概念發(fā)展為現(xiàn)實(shí)的,而使之實(shí)現(xiàn)的關(guān)鍵人物又是誰(shuí)。

文章表示,要書寫深度學(xué)習(xí)的完整歷史還為時(shí)過(guò)早,有些細(xì)節(jié)尚存在爭(zhēng)議,但是我們已經(jīng)能追尋其公認(rèn)的起源概貌,雖然還不完整,也能確定一些先驅(qū)者了。沃倫·麥卡洛克(WarrenMcCulloch)和沃爾特·皮茨(Walter Pitts)就名列其中。他們?cè)缭?943年就提出了人工神經(jīng)元,這是大腦中“神經(jīng)網(wǎng)絡(luò)”的計(jì)算模型。還有美國(guó)斯坦福大學(xué)(Stanford University)的伯納德·威德羅(BernardWidrow)和泰德·霍夫(Ted Hoff),他們?cè)诙兰o(jì)五十年代末期開發(fā)了一種神經(jīng)網(wǎng)絡(luò)應(yīng)用,降低電話線中的噪音。

同一時(shí)期,美國(guó)心理學(xué)家弗蘭克·羅森布拉特(Frank Rosenblatt)引入了“感知器”這種設(shè)備的概念,模擬大腦的神經(jīng)結(jié)構(gòu),并展現(xiàn)出學(xué)習(xí)的能力。后來(lái),美國(guó)麻省理工學(xué)院(MIT)的馬文·明斯基(Marvin Minsky)和西摩·帕普特(SeymourPapert)在其1969年出版的書《感知器》中,用數(shù)學(xué)的方法展示了感知器只能進(jìn)行很基礎(chǔ)的任務(wù),所以這項(xiàng)研究暫停。他們的書還討論了訓(xùn)練多層神經(jīng)網(wǎng)絡(luò)的難點(diǎn)。

1986年,加拿大多倫多大學(xué)(University of Toronto)的杰弗里·辛頓(Geoffrey Hinton)與同事大衛(wèi)·魯姆哈特(DavidRumelhart)和羅納德·威廉姆斯(Ronald Williams)發(fā)表了目前很著名的反向傳播訓(xùn)練算法,解決了這一訓(xùn)練難題,但有些業(yè)內(nèi)人士指出芬蘭數(shù)學(xué)家賽普·林納因馬(SeppoLinnainmaa)早在二十世紀(jì)六十年代就已經(jīng)發(fā)明了反向傳播。美國(guó)紐約大學(xué)(New York University)的楊立昆(Yann LeCun)率先將神經(jīng)網(wǎng)絡(luò)應(yīng)用于圖像識(shí)別任務(wù),他在1998年發(fā)表的文章中定義了卷積神經(jīng)網(wǎng)絡(luò),這種神經(jīng)網(wǎng)絡(luò)模擬人類的視覺皮層。同期,約翰·霍普菲爾德(JohnHopfield)推廣了“霍普菲爾德”網(wǎng)絡(luò),這是首個(gè)循環(huán)神經(jīng)網(wǎng)絡(luò)。1997年,爾根·施米德休伯(JürgenSchmidhuber)和賽普·霍克賴特(Sepp Hochreiter)進(jìn)一步擴(kuò)展了該網(wǎng)絡(luò),他們引入了長(zhǎng)短期記憶模型(long-short termmemory, LSTM),極大地提高了循環(huán)神經(jīng)網(wǎng)絡(luò)的效率和實(shí)用性。2012年,辛頓和他的學(xué)生在著名的 ImageNet 競(jìng)賽中取得了突出的結(jié)果,彰顯了深度學(xué)習(xí)的強(qiáng)大。該競(jìng)賽以李飛飛等人整理的數(shù)據(jù)集為基礎(chǔ)。與此同時(shí),杰弗里·迪恩(JeffDean)和吳恩達(dá)(Andrew Ng)正在谷歌大腦(Google Brain)進(jìn)行大規(guī)模圖像識(shí)別方面的突破性工作。

深度學(xué)習(xí)也增強(qiáng)了強(qiáng)化學(xué)習(xí)這一已存在的領(lǐng)域,理查德·薩頓(Richard Sutton)就是其中一位頂尖的研究人員,他牽頭讓谷歌DeepMind開發(fā)的系統(tǒng)取得了多次棋類比賽的勝利。2014年,伊恩·古德費(fèi)洛(IanGoodfellow)發(fā)表了一篇關(guān)于生成式對(duì)抗網(wǎng)絡(luò)的文章,這種網(wǎng)絡(luò)與強(qiáng)化學(xué)習(xí)已成為了該領(lǐng)域近期多個(gè)研究的焦點(diǎn)。

人工智能(AI)能力的持續(xù)進(jìn)步讓斯坦福大學(xué)啟動(dòng)了“人工智能百年研究”(One Hundred Year Study on Artificial Intelligence)項(xiàng)目。該項(xiàng)目由微軟研究院院長(zhǎng)埃里克·霍維茨(EricHorvitz)發(fā)起,是基于他和微軟研究院的同事所進(jìn)行的長(zhǎng)期研究。過(guò)去幾年里,眾多研究先驅(qū)的研究結(jié)果和指導(dǎo)讓我們受益良多。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴

原文標(biāo)題:深度學(xué)習(xí)的起源與先行者

文章出處:【微信號(hào):AI_News,微信公眾號(hào):人工智能快報(bào)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    軍事應(yīng)用中深度學(xué)習(xí)的挑戰(zhàn)與機(jī)遇

    人工智能尤其是深度學(xué)習(xí)技術(shù)的最新進(jìn)展,加速了不同應(yīng)用領(lǐng)域的創(chuàng)新與發(fā)展。深度學(xué)習(xí)技術(shù)的發(fā)展深刻影響
    的頭像 發(fā)表于 02-14 11:15 ?421次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)之間存在著密切的關(guān)系,以下是對(duì)它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡(luò)的基本概念 BP神經(jīng)網(wǎng)絡(luò),即反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network
    的頭像 發(fā)表于 02-12 15:15 ?669次閱讀

    NPU在深度學(xué)習(xí)中的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)作為其核心驅(qū)動(dòng)力之一,已經(jīng)在眾多領(lǐng)域展現(xiàn)出了巨大的潛力和價(jià)值。NPU(Neural Processing Unit,神經(jīng)網(wǎng)絡(luò)處理單元)是專門
    的頭像 發(fā)表于 11-14 15:17 ?1633次閱讀

    GPU深度學(xué)習(xí)應(yīng)用案例

    GPU在深度學(xué)習(xí)中的應(yīng)用廣泛且重要,以下是一些GPU深度學(xué)習(xí)應(yīng)用案例: 一、圖像識(shí)別 圖像識(shí)別是深度學(xué)習(xí)
    的頭像 發(fā)表于 10-27 11:13 ?1041次閱讀

    AI大模型與深度學(xué)習(xí)的關(guān)系

    人類的學(xué)習(xí)過(guò)程,實(shí)現(xiàn)對(duì)復(fù)雜數(shù)據(jù)的學(xué)習(xí)和識(shí)別。AI大模型則是指模型的參數(shù)數(shù)量巨大,需要龐大的計(jì)算資源來(lái)進(jìn)行訓(xùn)練和推理。深度學(xué)習(xí)算法AI大模型
    的頭像 發(fā)表于 10-23 15:25 ?2600次閱讀

    FPGA做深度學(xué)習(xí)能走多遠(yuǎn)?

    。FPGA的優(yōu)勢(shì)就是可編程可配置,邏輯資源多,功耗低,而且賽靈思等都在極力推廣。不知道用FPGA做深度學(xué)習(xí)未來(lái)會(huì)怎樣發(fā)展,能走多遠(yuǎn),你怎么看。 A:FPGA 在深度
    發(fā)表于 09-27 20:53

    深度學(xué)習(xí)算法在嵌入式平臺(tái)上的部署

    隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)算法在各個(gè)領(lǐng)域的應(yīng)用日益廣泛。然而,將深度學(xué)習(xí)算法部署到資源受限的嵌入式平臺(tái)上,仍然是一個(gè)具有挑戰(zhàn)性的任
    的頭像 發(fā)表于 07-15 10:03 ?2639次閱讀

    深度學(xué)習(xí)中的時(shí)間序列分類方法

    發(fā)展,基于深度學(xué)習(xí)的TSC方法逐漸展現(xiàn)出其強(qiáng)大的自動(dòng)特征提取和分類能力。本文將從多個(gè)角度對(duì)深度學(xué)習(xí)在時(shí)間序列分類中的應(yīng)用進(jìn)行綜述,探討常用
    的頭像 發(fā)表于 07-09 15:54 ?1875次閱讀

    深度學(xué)習(xí)中的無(wú)監(jiān)督學(xué)習(xí)方法綜述

    深度學(xué)習(xí)作為機(jī)器學(xué)習(xí)領(lǐng)域的一個(gè)重要分支,近年來(lái)在多個(gè)領(lǐng)域取得了顯著的成果,特別是在圖像識(shí)別、語(yǔ)音識(shí)別、自然語(yǔ)言處理等領(lǐng)域。然而,深度學(xué)習(xí)模型
    的頭像 發(fā)表于 07-09 10:50 ?1474次閱讀

    深度學(xué)習(xí)在視覺檢測(cè)中的應(yīng)用

    深度學(xué)習(xí)是機(jī)器學(xué)習(xí)領(lǐng)域中的一個(gè)重要分支,其核心在于通過(guò)構(gòu)建具有多層次的神經(jīng)網(wǎng)絡(luò)模型,使計(jì)算機(jī)能夠大量數(shù)據(jù)中自動(dòng)學(xué)習(xí)并提取特征,進(jìn)而實(shí)現(xiàn)對(duì)復(fù)
    的頭像 發(fā)表于 07-08 10:27 ?1137次閱讀

    深度學(xué)習(xí)與nlp的區(qū)別在哪

    深度學(xué)習(xí)和自然語(yǔ)言處理(NLP)是計(jì)算機(jī)科學(xué)領(lǐng)域中兩個(gè)非常重要的研究方向。它們之間既有聯(lián)系,也有區(qū)別。本文將介紹深度學(xué)習(xí)與NLP的區(qū)別。 深度
    的頭像 發(fā)表于 07-05 09:47 ?1459次閱讀

    基于深度學(xué)習(xí)的小目標(biāo)檢測(cè)

    在計(jì)算機(jī)視覺領(lǐng)域,目標(biāo)檢測(cè)一直是研究的熱點(diǎn)和難點(diǎn)之一。特別是在小目標(biāo)檢測(cè)方面,由于小目標(biāo)在圖像中所占比例小、特征不明顯,使得檢測(cè)難度顯著增加。隨著深度學(xué)習(xí)技術(shù)的快速發(fā)展,尤其是卷積神經(jīng)網(wǎng)絡(luò)(CNN
    的頭像 發(fā)表于 07-04 17:25 ?1834次閱讀

    人工智能、機(jī)器學(xué)習(xí)深度學(xué)習(xí)是什么

    在科技日新月異的今天,人工智能(Artificial Intelligence, AI)、機(jī)器學(xué)習(xí)(Machine Learning, ML)和深度學(xué)習(xí)(Deep Learning, DL)已成為
    的頭像 發(fā)表于 07-03 18:22 ?2500次閱讀

    深度學(xué)習(xí)與卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)作為其中的重要分支,已經(jīng)在多個(gè)領(lǐng)域取得了顯著的應(yīng)用成果。圖像識(shí)
    的頭像 發(fā)表于 07-02 18:19 ?1302次閱讀

    深度學(xué)習(xí)與傳統(tǒng)機(jī)器學(xué)習(xí)的對(duì)比

    在人工智能的浪潮中,機(jī)器學(xué)習(xí)深度學(xué)習(xí)無(wú)疑是兩大核心驅(qū)動(dòng)力。它們各自以其獨(dú)特的方式推動(dòng)著技術(shù)的進(jìn)步,眾多領(lǐng)域帶來(lái)了革命性的變化。然而,盡管它們都屬于機(jī)器
    的頭像 發(fā)表于 07-01 11:40 ?2159次閱讀
    主站蜘蛛池模板: www.丁香| 一级片在线视频 | 91md天美精东蜜桃传媒在线 | 亚洲已满18点击进入在线观看 | 48pao强力打造免费基地 | 在线免费你懂的 | 亚洲视频福利 | 91婷婷色涩涩 | 国产在视频线精品视频2021 | 成人丁香乱小说 | 精品日韩 | 色多多a | 丁香婷婷亚洲 | 日本一区二区视频 | 午夜男人的天堂 | 免费啪视频在线观看免费的 | 国产免费一级在线观看 | 久久99久久精品97久久综合 | 国产精品乳摇在线播放 | 色噜噜综合网 | 国产精品夜夜春夜夜爽久久 | 天天透天天操 | 777黄色片| 欧洲mv日韩mv国产mv | 国产亚洲papapa | 性色爽爱性色爽爱网站 | 成熟女性毛茸茸xx免费视频 | 日本国产黄色片 | 色多多福利 | h视频在线观看视频观看 | 美女全黄网站免费观看 | 黄色网一级片 | 国产黄大片在线观看 | 欧美一级高清片在线 | 亚洲欧美国产视频 | 女bbbbxxxx另类亚洲 | 成 人网站免费 | 欧美性猛交ⅹxxx乱大交免费 | 国产精品igao在线观看樱花日本 | 欧美黑人黄色片 | 性免费视频|