91在线观看视频-91在线观看视频-91在线观看免费视频-91在线观看免费-欧美第二页-欧美第1页

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

氮化鎵如何在5G時代大展拳腳?

MEMS ? 來源:未知 ? 作者:胡薇 ? 2018-08-06 17:54 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

據麥姆斯咨詢介紹,5G的角逐似乎正在不斷加速,尤其是在美國,AT&T和Verizon等主要電信運營商宣布將在2018年底之前推出5G服務。先進的LTE(LTE-A)已經迅速升級擴展到當前的基站(BS)。LTE-PRO(亦即4.5G)的現場試驗正在全面展開,下載速度已經達到1 Gbps。固定無線接入(FWA)技術也已經通過了大量的現場試驗,展示了毫米波(mmWave)頻譜的早期成功應用。

5G發展時間表數據來源:《5G對射頻RF)前端產業的影響》對5G的嚴格要求不僅體現在宏觀上帶來基站密度致密化,還要求在器件級別上實現功率密度的增強。據麥姆斯咨詢報道,GaN(氮化鎵)將在未來幾十年內以20%的復合年增長率(CAGR)顯著地滲透兩個主要市場——國防和無線通信。雖然許多其它化合物半導體和工藝也將在5G發展中發揮重要作用,但很明顯地,GaN將以其功率/效率水平和高頻性能,在高性能無線解決方案中發揮關鍵作用。先進調制方案考慮因素隨著蜂窩技術的發展,所使用的調制方案通常是由具有高峰值平均功率比(PAPR,峰值功率與信號的平均功率之比)的非恒定包絡來定義的。如下圖所示,PAPR從3G(W-CDMA)的大約2:1急劇增長到了4G(LTE / OFDM)的7:1。并且,雖然OFDM等先進調制方案在有限的網絡資源下實現了非常高的速度,但是頻譜效率的提高,是以功率放大器(PA)的能量效率下降為代價的。

移動通訊信號PAPR的發展為了避免信號失真,必須對高PAPR波形進行線性放大。如果信號通過非線性PA,則會發生帶內失真,進而增加誤碼率(BER)和帶外輻射,從而導致相鄰信道干擾。因此,這些高功率放大器往往需要在線性和效率之間進行權衡。

數據傳輸速度 vs. 載波單元(Component Carrier)數據來源:《5G對手機射頻前端模組和連接性的影響》

載波聚合考慮因素除了存在不斷增長的PAPR設計約束,還需要運行在比傳統PA更寬的帶寬上。移動網絡運營商(MNO)已經面臨著實現更高數據速率的需求,但嚴重受限于低于20 MHz的帶寬。載波聚合便是為了在頻譜稀疏的運行區間大幅增加有效帶寬。載波聚合將同一頻帶內(帶內)或不同頻帶內(帶間)的無線信道組合起來,以提高無線數據速率,并降低延遲。LTE-A允許載波單元具有高達20MHz的帶寬,最多支持5個這樣的帶寬,可以組成高達100MHz的帶寬進行聚合。過去,移動網絡運營商還可以使用覆蓋單個20 MHz頻段的系統,但未來必須大幅提升網絡容量,才能支持即將到來的移動流量暴漲。現在的技術需要最高支持20倍的帶寬,來處理這些多頻帶和多載波系統。支持這些先進的調制方案需要面對多方面的問題,目前已經開發出了多個已知的解決方案。有些包括數字預失真(DPD)以提高線性度,Doherty和包絡跟蹤(ET)技術以獲得更高效率。GaN高電子遷移率晶體管(HEMT)憑借其固有的高擊穿電壓、高功率密度、大帶寬和高效率,已成為基站PA的有力候選技術。對于約翰遜品質因數(FoM)(衡量高頻功率晶體管應用的半導體適用性),GaN器件比硅(Si)、砷化鎵(GaAs)、碳化硅(SiC)和磷化銦(InP)要高出幾個數量級。相比現有的硅LDMOS和GaAs解決方案,GaN器件能夠提供下一代高頻電信網絡所需要的功率和效能。而且,GaN的寬帶性能也是實現多頻帶載波聚合等重要新技術的關鍵因素之一。由于LDMOS無法再支持更高的頻率,GaAs也不再是高功率應用的最優方案,預計未來大部分6GHz以下宏網絡單元應用都將采用GaN器件。GaN基站應用

2015~2025年電信基站主要趨勢數據來源:《RF GaN市場應用、技術及襯底-2018版》

根據市場研究機構ABI Research的研究數字,2014年基站RF功率器件市場規模為11億美元,其中GaN占比11%,而橫向雙擴散金屬氧化物半導體技術(LDMOS)占比88%。2017年,GaN市場份額預估增長到了25%,并且預計將繼續保持增長。如下圖所示,蜂窩基站GaN市場占整個RF功率市場的最大份額將超過50%。對于5G基站PA的一些要求可能包括3~6GHz和24GHz~40GHz的運行頻率,RF功率在0.2W~30W之間。憑借其良好的傳播特性,早期的5G網絡可能會采用低于6 GHz的頻段。

GaN預計到2025年將主導RF功率器件市場,搶占基于硅LDMOS技術的基站PA市場如前所述,GaN-on-SiC HEMT是基站PA的主要候選技術,因為它們能夠在比硅 LDMOS晶體管更大的帶寬、更高頻率下,在Doherty配置中實現更高的功率附加效率(PAE)。GaN HEMT技術也可以非常堅固耐用,在高功率負載嚴重不匹配的情況下運行,并且性能降低最小。這種固有的高工作電壓和輸出阻抗帶來了低損耗、寬帶匹配和大輸出功率。此外,其更大的安全運行區(SAO),可減輕由于功率波動引起的任何熱場或電場擊穿問題,從而最大限度地減少對基站設備的維護需要。GaN MMIC的低噪聲系數性能結合其高功率密度,使它們成為發射器鏈中PA基板和接收器鏈中低噪聲放大器(LNA)的潛在理想選擇。

已有幾種現有GaN 低噪聲放大器實施方案能實現低噪聲要求,同時可承受高入射功率而不會造成損壞。GaN毫米波應用毫米波(mmWave)頻譜是實現5G的關鍵;其大量可用帶寬是支持高數據速率應用(如4K/8K視頻流)以及增強現實和虛擬現實(AR/VR)應用的有力選擇。小型基站是利用毫米波頻帶的理想選擇,因為它們可以在城市環境中緊密排布,減輕高頻信號的有損傳播特性。為了實際目的,這些小型基站必須易于安裝在高尺寸、重量以及功率受限的結構上。

有關尺寸問題,事實上隨著晶體管和天線尺寸在更高頻率下的逐漸減小,某種程度上已經解決。不過,更小尺寸的組件,通常具有較差的熱管理特性,因為較大的表面積能夠更好地在設備上分散熱量。SiC襯底具有相對較高的熱導率(~120 W/MK),因此可以更容易地將熱從晶體管轉移到散熱器。對于成本較低的小型基站應用,化學氣相沉積(CVD)金剛石(~1800 W/MK)比SiC具有更大的熱導率。GaN PA已經用于尖端衛星通信中的Ka波段轉發器。

即將到來的高吞吐量衛星(HTS)和低地球軌道(LEO)中小型衛星需要外形尺寸更小的元件,以便在功率極其受限的環境中實現高度集成。該技術可以用于24 GHz以上的5G毫米波段。當前0.2um、0.15um和0.1um的GaN工藝可使截止頻率進入W波段,功率密度約為2W/mm。GaN PA在較低頻率下表現出的高功率密度、寬運行帶寬、良好的PAE和線性度,以及低噪聲性能,在毫米波頻率下也具有相同的性能表現。AlGaN / GaN異質結構特別適用于高頻性能,與基于AlGaAs / GaAs的器件不同,AlGaN / GaN異質結構的大自發和壓電極化效應,可產生電子通道而不需要任何調制摻雜。GaN用于大規模MIMO當前的基站技術涉及具有多達8個天線的MIMO配置,以通過簡單的波束形成算法來控制信號,但是大規模MIMO可能需要利用數百個天線來實現5G所需要的數據速率和頻譜效率。

大規模MIMO中使用的耗電量大的有源電子掃描陣列(AESA),需要單獨的PA來驅動每個天線元件,這將帶來顯著的尺寸、重量、功率密度和成本(SWaP-C)挑戰。這將始終涉及能夠滿足64個元件和超出MIMO陣列的功率、線性、熱管理和尺寸要求,且在每個發射/接收(T/R)模塊上偏差最小的射頻PA。由于GaN芯片每年在功率密度和封裝方面都會取得飛躍,到了大規模MIMO系統在商業上可行的時候,GaN很可能成為一種自然選擇。結語GaN襯底已經在軍用雷達中使用了數十年,但是這類應用的機密性,在某種程度上阻礙了它在商業領域的成長和成熟。GaN器件發源于美國國防部,已經廣泛應用于新一代航天和地面雷達系統。GaN的高功率性能提高了雷達的探測距離和分辨率,設計人員對該新技術的應用也已經日趨成熟。然而,與軍事相關的技術總是非常敏感。隨著國防應用領域日益青睞GaN器件,非軍事應用領域或將受到影響,尤其是針對該技術的市場并購行為。

如果涉及軍事應用,政府勢必橫加干預,例如FGC Investment Fund對Aixtron的并購,以及英飛凌(Infineon)對Wolfspeed的并購。盡管如此,恰如Yole及其他調研機構的預測,對這種寬帶隙材料的需求正在發生轉變,這將從根本上消除軍事和集成設備制造商(IDM)對獨立代工廠和設計公司的排他性。此外,蜂窩通信技術及行業的發展,為GaN的應用提供了非常有前景的利基市場。商業領域的這種需求,很可能會推動GaN基器件的制造,并最終降低GaN基器件的批量價格。隨著蜂窩基站利用載波聚合等先進的調制方案和技術,商用GaN PA的早期應用可能會下降。 但在此之后,隨著毫米波應用尤其是大規模MIMO的興起,GaN的市場前景依然強勁,因為很可能沒有其它候選技術,能夠滿足大規模有源電子掃描陣列所需的功率密度要求。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • GaN
    GaN
    +關注

    關注

    19

    文章

    2204

    瀏覽量

    76733
  • 5G
    5G
    +關注

    關注

    1360

    文章

    48808

    瀏覽量

    573467

原文標題:5G大戲上演,氮化鎵戲份很足

文章出處:【微信號:MEMSensor,微信公眾號:MEMS】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    氮化電源IC U8765產品概述

    氮化憑借高頻高效特性,具備了體積小、功率高、發熱低等優勢,但小型化雖好,散熱才是硬道理,選氮化電源ic得看準散熱設計。今天就給小伙伴們推薦一款散熱性能優越、耐壓700V的
    的頭像 發表于 04-29 18:12 ?300次閱讀

    330W氮化方案,可過EMC

    氮化
    深圳市三佛科技
    發布于 :2025年04月01日 11:31:39

    CE65H110DNDI 能華330W 氮化方案,可過EMC

    深圳市三佛科技有限公司供應CE65H110DNDI 能華330W 氮化方案,可過EMC,原裝現貨 CE65H110DNDl系列650v、110mΩ氮化(GaN)FET是常關器件
    發表于 03-31 14:26

    氮化系統 (GaN Systems) E-HEMTs 的EZDriveTM方案

    氮化系統 (GaN Systems) E-HEMTs 的EZDriveTM方案
    的頭像 發表于 03-13 16:33 ?2238次閱讀
    <b class='flag-5'>氮化</b><b class='flag-5'>鎵</b>系統 (GaN Systems) E-HEMTs 的EZDriveTM方案

    氮化硼散熱材料大幅度提升氮化快充效能

    什么是氮化(GaN)充電頭?氮化充電頭是一種采用氮化(GalliumNitride,GaN
    的頭像 發表于 02-26 04:26 ?542次閱讀
    <b class='flag-5'>氮化</b>硼散熱材料大幅度提升<b class='flag-5'>氮化</b><b class='flag-5'>鎵</b>快充效能

    垂直氮化器件的最新進展和可靠性挑戰

    過去兩年中,氮化雖然發展迅速,但似乎已經遇到了瓶頸。與此同時,不少垂直氮化的初創企業倒閉或者賣盤,這引發大家對垂直氮化
    的頭像 發表于 02-17 14:27 ?1147次閱讀
    垂直<b class='flag-5'>氮化</b><b class='flag-5'>鎵</b>器件的最新進展和可靠性挑戰

    氮化充電器和普通充電器有啥區別?

    相信最近關心手機行業的朋友們都有注意到“氮化(GaN)”,這個名詞在近期出現比較頻繁。特別是隨著小米發布旗下首款65W氮化快充充電器之后,“氮化
    發表于 01-15 16:41

    25W氮化電源芯片U8722BAS的主要特征

    在消費類快充電源市場中,氮化有著廣泛的應用,如今已有數十家主流電源廠商開辟了氮化快充產品線,推出的氮化
    的頭像 發表于 12-24 16:06 ?829次閱讀

    合作案例 | 一文解開遠山氮化功率器件耐高壓的秘密

    引言氮化(GaN),作為一種具有獨特物理和化學性質的半導體材料,近年來在電子領域大放異彩,其制成的氮化功率芯片在功率轉換效率、開關速度及耐高溫等方面優勢盡顯,在
    的頭像 發表于 11-12 15:58 ?772次閱讀
    合作案例 | 一文解開遠山<b class='flag-5'>氮化</b><b class='flag-5'>鎵</b>功率器件耐高壓的秘密

    遠山半導體氮化功率器件的耐高壓測試

    氮化(GaN),作為一種具有獨特物理和化學性質的半導體材料,近年來在電子領域大放異彩,其制成的氮化功率芯片在功率轉換效率、開關速度及耐高溫等方面優勢盡顯,在
    的頭像 發表于 10-29 16:23 ?1035次閱讀
    遠山半導體<b class='flag-5'>氮化</b><b class='flag-5'>鎵</b>功率器件的耐高壓測試

    碳化硅 (SiC) 與氮化 (GaN)應用 | 氮化硼高導熱絕緣片

    SiC和GaN被稱為“寬帶隙半導體”(WBG)。由于使用的生產工藝,WBG設備顯示出以下優點:1.寬帶隙半導體氮化(GaN)和碳化硅(SiC)在帶隙和擊穿場方面相對相似。氮化的帶隙
    的頭像 發表于 09-16 08:02 ?1374次閱讀
    碳化硅 (SiC) 與<b class='flag-5'>氮化</b><b class='flag-5'>鎵</b> (GaN)應用  | <b class='flag-5'>氮化</b>硼高導熱絕緣片

    氮化和砷化哪個先進

    景和技術需求。 氮化(GaN)的優勢 高頻與高效率 :氮化具有高電子遷移率和低電阻率,使得它在高頻和高功率應用中表現出色。例如,在5G
    的頭像 發表于 09-02 11:37 ?5350次閱讀

    氮化和碳化硅哪個有優勢

    的電子遷移率和較低的損耗,使其在高頻應用方面表現出色。這使得氮化成為制造微波器件、功率放大器以及射頻IC等高頻電子設備的理想材料。 氮化5G
    的頭像 發表于 09-02 11:26 ?3249次閱讀

    芯干線科技CEO說氮化

    氮化是一種由氮和結合而來的化合物,其中氮在元素周期表排序第7位,排序第31位,7月31日世界氮化
    的頭像 發表于 08-21 10:03 ?1071次閱讀

    華燦光電在氮化領域的進展概述

    7月31日,是世界氮化日。在這個充滿探索與突破的時代氮化憑借其卓越的特質和廣袤的應用維度,化作科技領域的一顆冉冉升起的新星。
    的頭像 發表于 08-01 11:52 ?1592次閱讀
    主站蜘蛛池模板: 91深夜福利 | 色多多在线观看视频 | 久久精品网站免费观看 | 亚洲狠狠综合久久 | 狠狠操天天干 | h小视频在线 | 色综合视频一区二区三区 | 日韩免费高清一级毛片在线 | 宅男午夜视频在线观看 | 1000又爽又黄禁片在线久 | 精品国产污网站在线观看15 | 欧美一级高清片欧美国产欧美 | 福利一区在线观看 | 午夜免费观看 | 成人在线综合 | 色涩在线 | 毛片福利| 婷婷四房综合激情五月性色 | 三级网站在线播放 | 97久久人人 | 91大神大战高跟丝袜美女 | 欧美影院一区二区 | 欧美在线不卡视频 | 天堂网中文在线最新版 | 天堂网最新版中文 | 美女被拍拍拍拍拍拍拍拍 | 欧美大片国产在线永久播放 | 免费观看视频在线 | 久久久久国产精品免费免费 | 色综合图片二区150p | 99久久免费中文字幕精品 | 天天色天天综合网 | 天天干一干 | 91精品欧美激情在线播放 | 六月丁香啪啪六月激情 | 久久国产午夜精品理论篇小说 | 亚洲国产成a人v在线观看 | 爱爱免费 | 一区二区三区高清视频在线观看 | 成人午夜啪啪免费网站 | 国产小视频免费看 |