混合分立式功率放大器設計
我們前面展示的分布式放大器技術對MMIC效果明顯。然而,對于混合分立式設計來說,要實現多級是十分困難的。我們選擇采用一種橋接T拓撲結構,將單個晶體管的輸入端匹配至50Ω。我們選擇了合適的晶體管的尺寸,以便輸出端的50Ω端口與其目標負載線完好匹配,因此,放大器輸出端可以不匹配。我們選擇了一款周長為1.24mm的晶體管。另外,借助周長為2.48mm的晶體管也可實現不錯的負載線,其一般具有更高的效率和更低的功率密度。要進一步優化性能,可以在電路板級進行更多匹配。MMIC成品如圖4所示。芯片的最終尺寸為1.277mm ×1.06mm。用周長為2.48mm的晶體管(本文中未討論)打造的另一款芯片的尺寸為1.277mm ×1.305mm(大23%)。
圖4:用于混合分立式功率放大器解決方案的MMIC成品圖(左)和原理圖(右)。
橋接T拓撲結構是Zobel網絡的修改版,可以在輸入端提供恒定阻抗。用于匹配晶體管輸入端的拓撲結構如圖4所示。該電路的匹配設計可在30MHz至2700MHz范圍內提供良好的回波損耗性能。橋接T匹配的不足之處在于,網絡損耗較大。然而,在這些低頻下,晶體管擁有較大的增益,可以平衡掉這些損耗,從而使芯片在各種頻率下均能無條件保持穩定。因此,對于該工作頻率,橋接T是一種非常合適的選擇,不會影響性能。
橋接T網絡的低頻性能在很大程度上取決于并聯網絡中的阻抗。為了在低頻下實現實部阻抗,需要使用一個較大的電容。為此,我們用一個焊盤連接一個片外電容(見圖4中的外部電容)。由于MMIC的輸入端已匹配至50 Ω,因此,輸入網絡不需要進行其他匹配。此外,器件在尺寸設計上已在輸出端提供近50 Ω的負載線,因此,輸出匹配網絡只需要一個串聯L并聯C網絡以保障高頻性能,然后,在低頻下提供50Ω的負載阻抗以保障寬帶性能。輸入和輸出匹配網絡都采用了寬帶偏置網絡,并部署在一塊4”×3”的應用板上。
混合式放大器的測量值
我們在一塊用Rogers 4350B制成的電路板上對最終器件進行了測試。50Ω匹配輸入表現良好,能在40MHz至2.7GHz的范圍內實現10dB的回波損耗,在低至30MHz的頻率范圍內實現7dB的回波損耗(圖5)。器件在低頻下實現12dB的增益,在高頻下實現17dB的增益。
在32V和脈沖條件下,放大器實現了5W的典型輸出功率(或者,4W/mm的功率密度),在1至2.7GHz范圍內實現45%的功率附加效率(圖6)。我們選擇了脈沖而非CW工作模式,因為評估板限制了總功耗。另外,我們在1至2.7GHz范圍內對數據進行了測量,因為我們無法在1GHz以下構建脈沖試驗臺。
討論
結果表明,兩款放大器均能在30~2700 MHz范圍內工作,二者具有相似的輸出功率密度。完全匹配的MMIC在器件尺寸以及輸出功率的選擇方面表現出較大的靈活性,但其代價也比較大。另一方面,我們展示的混合式解決方案具有較為獨特,器件尺寸固定,因此對性能形成了限制;較小或大得多的晶體管都無法在整個帶寬范圍內取得良好效果。但是,由于芯片尺寸非常小(為MMIC的1/4,但功率僅少一半),因此其代價更能令人接受。另外,最多可以使用兩倍周長的晶體管,可實現類似MMIC的性能,芯片尺寸增幅也不大(23%),并且混合式解決方案可使用外部元件進行調整,以在特定頻段范圍內實現更加優化的性能。然而,MMIC解決方案由于要處理的寄生電容較少,所以可以實現卓越的性能。歸根結底,如果系統側重于打造一種低成本的解決方案,并且可以犧牲一定的性能,則混合式解決方案是更合適的選擇。然而,如果系統要求以較高的代價提供特定的性能,則MMIC解決方案是更好的選擇。盡管如此,實踐表明,兩種設計技術都是寬帶條件下的有效選擇。
圖6:混合式解決方案的實測Pout和漏極效率。放大器驅動至3dB壓縮點,所用脈沖寬度為100us,占空比為20%。
結論
本文介紹了兩種不同的放大器平臺,即全集成式MMIC和混合封裝式放大器,兩者均可在30 ~2700MHz范圍內實現領先的性能。其實現方法是在MMIC上運用行波技術,在混合式設計中,則是運用橋接T拓撲結構使晶體管匹配至50Ω。兩種技術各有優點,在性能和成本方面各有折衷。
-
芯片
+關注
關注
457文章
51344瀏覽量
428173 -
放大器
+關注
關注
143文章
13640瀏覽量
214386 -
封裝
+關注
關注
127文章
8033瀏覽量
143524
發布評論請先 登錄
相關推薦
評論