在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

研究人員開發解釋多義詞的神經網絡

NVIDIA英偉達企業解決方案 ? 來源:未知 ? 作者:胡薇 ? 2018-09-12 15:52 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

脫離上下文時,每個英文單詞都有多重含義。例如,“bank”可以指銀行或河岸;“Fair”可以指展覽會,也可以指對展覽會的評價;“Duck”可以是躲避傷害的動作,也可以指鴨子。

對于人類來說搞清楚一個單詞在某場景中適用的含義是非常簡單的。但是,對于自然語言處理模型就是另一回事了。近些年已經出現很多用于解析文本的AI工具,但是當涉及到多重含義的單詞時,這些工具往往會陷入困境。來自艾倫人工智能研究所(Allen Institute for Artificial Intelligence)和華盛頓大學的研究人員正在努力解決這一難題,他們使用了可以根據上下文來確定英文單詞含義的神經網絡

向前和向后閱讀

通常,NLP模型通過詞向量(在每個單詞中附加語言含義和單詞語法的基礎元素)中的結構化數據進行訓練。此算法基于假設每個單詞只有一種向量表示,但實際上英文單詞并非如此。

研究人員利用名為“ELMo”的神經系統打破了這一假設,此神經系統可以為每個單詞創造出無限數量的向量。

“‘ELMo’是‘Embeddings from Language Models’的縮寫,而不是毛茸茸的紅色芝麻街角色”,論文“Deep contextualized word representations”的第一作者Matthew Peters解釋道。

ELMo喜歡閱讀:這不是美國幼兒教育電視節目《芝麻街》中的Elmo,而是使用雙向語言模型的神經系統ELMo。

常規語言模型嘗試預測句子中即將出現的下一個單詞。如果片段是“The people sat down on the …,”,那么算法將預測出“bench”或“grass”之類的單詞。為了給單詞附加所有潛在含義的詞向量,這個團隊使用了雙向語言模型。

使用雙向模型意味著,該模型可以通過一個二次的回顧性算法,獲取句子的結尾并嘗試預測出現在句子結尾前邊的單詞。當模型嘗試分析的單詞出現在句首,并且相關上下文隨即出現時,這會非常有用。

“就像‘He lies to his teacher’與‘He lies on the sofa’這種情況”,Peters說道。

為測試ELMo的技能,該團隊利用六種不同的NLP任務(包括情緒分析和問答等)對算法進行測試。與之前使用相同訓練數據的方法相比,ELMo每次都會得到更新、更出色的結果,在某些情況下可以比之前的領先模型提升25%的速度。

“在NLP中,很重要的一點是,單一的方法能夠提高多樣化任務的性能”,Peters指出。

ELMo在半監督式學習領域大放異彩

在進行自然語言處理時,訓練數據的類型非常關鍵。例如,問答系統使用的模型無法在任何舊文本上進行訓練。通常,此類模型需要在由帶標注的問題和答案對組成的大型數據庫中訓練,以學習如何做出正確的回答。

標注數據非常耗時并且成本高昂。因此,研究人員首先選擇使用包含大約十億個單詞的大型無標記學術數據庫來訓練ELMo。然后,針對特定任務(例如問答)將此數據庫調整為一個帶標注的小型數據庫。對于這種結合使用大量無標記數據和一小部分已標記數據的方法,統稱為“半監督式學習”。

減少對已標記和帶標注數據的依賴后,研究人員可以更輕松地在現實問題中應用其NLP模型應用。

“在我們的示例中,我們選擇了一個未標記的學術數據庫來訓練語言模型”,Peters說道。但是研究人員能夠調整算法,以便在任何其他未標記的數據庫中運行該算法,也可以將其應用于生物醫學論文、法律合同或其他語言等專業領域中。

與之前最先進(SOTA)的基準相比,ELMo在六個基準NLP任務中都增強了神經模型的性能。從左到右,這些任務依次是:語義推理、命名實體識別、問題回答、指代消解、語義角色標注和情感分類。

研究人員通過Amazon Web Service,使用NVIDIA Tesla V100和K80 GPU助力訓練和推理。

在后續論文中,研究人員指出其僅使用了幾百個已標記示例,便可應用ELMo模式回答幾何問題。人工需要花費幾個小時便能完成此標記工作,但卻會顯著提高NLP模型的性能。

ELMo已作為開源庫提供。Peters表示其他的NLP研究人員已經將此模型應用到了他們自己的工作中,包括除英語外的其他語言。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 神經網絡
    +關注

    關注

    42

    文章

    4812

    瀏覽量

    103350
  • nlp
    nlp
    +關注

    關注

    1

    文章

    490

    瀏覽量

    22578

原文標題:“躲避”or“鴨子”:看深度學習如何解釋多義詞

文章出處:【微信號:NVIDIA-Enterprise,微信公眾號:NVIDIA英偉達企業解決方案】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    無刷電機小波神經網絡轉子位置檢測方法的研究

    MATLAB/SIMULINK工具對該方法進行驗證,實驗結果表明該方法在全程速度下效果良好。 純分享帖,點擊下方附件免費獲取完整資料~~~ *附件:無刷電機小波神經網絡轉子位置檢測方法的研究.pdf
    發表于 06-25 13:06

    神經網絡RAS在異步電機轉速估計中的仿真研究

    眾多方法中,由于其結構簡單,穩定性好廣泛受到人們的重視,且已被用于產品開發。但是MRAS仍存在在低速區速度估計精度下降和對電動機參數變化非常敏感的問題。本文利用神經網絡的特點,使估計更為簡單、快速
    發表于 06-16 21:54

    BP神經網絡與卷積神經網絡的比較

    BP神經網絡與卷積神經網絡在多個方面存在顯著差異,以下是對兩者的比較: 一、結構特點 BP神經網絡 : BP神經網絡是一種多層的前饋神經網絡
    的頭像 發表于 02-12 15:53 ?623次閱讀

    人工神經網絡的原理和多種神經網絡架構方法

    所擬合的數學模型的形式受到大腦中神經元的連接和行為的啟發,最初是為了研究大腦功能而設計的。然而,數據科學中常用的神經網絡作為大腦模型已經過時,現在它們只是能夠在某些應用中提供最先進性能的機器學習模型。近年來,由于
    的頭像 發表于 01-09 10:24 ?1159次閱讀
    人工<b class='flag-5'>神經網絡</b>的原理和多種<b class='flag-5'>神經網絡</b>架構方法

    基于光學衍射神經網絡的軌道角動量復用全息技術的設計與實驗研究

    隨著神經網絡的發展,光學神經網絡(ONN)的研究受到廣泛關注。研究人員從衍射光學、散射光、光干涉以及光學傅里葉變換等基礎理論出發,利用各種光學設備及材料成功實現了
    的頭像 發表于 12-07 17:39 ?2783次閱讀
    基于光學衍射<b class='flag-5'>神經網絡</b>的軌道角動量復用全息技術的設計與實驗<b class='flag-5'>研究</b>

    卷積神經網絡的實現工具與框架

    卷積神經網絡因其在圖像和視頻處理任務中的卓越性能而廣受歡迎。隨著深度學習技術的快速發展,多種實現工具和框架應運而生,為研究人員開發者提供了強大的支持。 TensorFlow 概述
    的頭像 發表于 11-15 15:20 ?650次閱讀

    卷積神經網絡與傳統神經網絡的比較

    在深度學習領域,神經網絡模型被廣泛應用于各種任務,如圖像識別、自然語言處理和游戲智能等。其中,卷積神經網絡(CNNs)和傳統神經網絡是兩種常見的模型。 1. 結構差異 1.1 傳統神經網絡
    的頭像 發表于 11-15 14:53 ?1811次閱讀

    Moku人工神經網絡101

    不熟悉神經網絡的基礎知識,或者想了解神經網絡如何優化加速實驗研究,請繼續閱讀,探索基于深度學習的現代智能化實驗的廣闊應用前景。什么是神經網絡?“人工
    的頭像 發表于 11-01 08:06 ?638次閱讀
    Moku人工<b class='flag-5'>神經網絡</b>101

    UNet模型屬于哪種神經網絡

    U-Net模型屬于卷積神經網絡(Convolutional Neural Network, CNN)的一種特殊形式 。它最初由德國弗萊堡大學計算機科學系的研究人員在2015年提出,專為生物醫學圖像
    的頭像 發表于 07-24 10:59 ?5450次閱讀

    怎么對神經網絡重新訓練

    重新訓練神經網絡是一個復雜的過程,涉及到多個步驟和考慮因素。 引言 神經網絡是一種強大的機器學習模型,廣泛應用于圖像識別、自然語言處理、語音識別等領域。然而,隨著時間的推移,數據分布可能會
    的頭像 發表于 07-11 10:25 ?843次閱讀

    pytorch中有神經網絡模型嗎

    處理、語音識別等領域取得了顯著的成果。PyTorch是一個開源的深度學習框架,由Facebook的AI研究團隊開發。它以其易用性、靈活性和高效性而受到廣泛歡迎。在PyTorch中,有許多預訓練的神經網絡模型可供選擇,這些模型可以
    的頭像 發表于 07-11 09:59 ?1733次閱讀

    BP神經網絡和卷積神經網絡的關系

    BP神經網絡(Backpropagation Neural Network)和卷積神經網絡(Convolutional Neural Network,簡稱CNN)是兩種在人工智能和機器學習領域
    的頭像 發表于 07-10 15:24 ?2427次閱讀

    BP神經網絡和人工神經網絡的區別

    BP神經網絡和人工神經網絡(Artificial Neural Networks,簡稱ANNs)之間的關系與區別,是神經網絡領域中一個基礎且重要的話題。本文將從定義、結構、算法、應用及未來發展等多個方面,詳細闡述BP
    的頭像 發表于 07-10 15:20 ?2243次閱讀

    PyTorch神經網絡模型構建過程

    PyTorch,作為一個廣泛使用的開源深度學習庫,提供了豐富的工具和模塊,幫助開發者構建、訓練和部署神經網絡模型。在神經網絡模型中,輸出層是尤為關鍵的部分,它負責將模型的預測結果以合適的形式輸出。以下將詳細解析PyTorch中
    的頭像 發表于 07-10 14:57 ?895次閱讀

    全連接前饋神經網絡與前饋神經網絡的比較

    Neural Network, FCNN)和前饋神經網絡(Feedforward Neural Network, FNN)因其結構簡單、易于理解和實現,成為了研究者們關注的熱點。本文將從概念、模型結構、優缺點以及應用場景等方面,對全連接前饋
    的頭像 發表于 07-09 10:31 ?2.1w次閱讀
    主站蜘蛛池模板: 国内视频一区二区 | 欧美亚洲天堂 | 91老色批网站免费看 | 国产精品你懂得 | 午夜欧美电影 | 色噜噜亚洲精品中文字幕 | 人人干97| 男人天堂网址 | 男啪女视频免费观看网站 | 欧美乱妇高清无乱码 | 欧美成人在线网站 | 狠狠干亚洲色图 | 天天碰夜夜| 2021色噜噜狠狠综曰曰曰 | 在线观看国产精美视频 | 色综合欧美 | 国产色婷婷精品免费视频 | 亚欧精品一区二区三区 | 久久99久久精品国产只有 | 午夜免费福利在线观看 | 黄色一级片播放 | 天天综合天天添夜夜添狠狠添 | 国产片一级特黄aa的大片 | 深夜大尺度视频在线观看 | 午夜三级a三点 | 亚洲精品视频免费 | 亚洲激情a| 精品日韩一区二区三区 | 欧美αv日韩αv另类综合 | 国产吧在线 | 日本不卡视频一区二区三区 | 国产亚洲精品久久yy5099 | 四虎影片国产精品8848 | 国产三级 在线播放 | 日本欧美强乱视频在线 | 在线看免费| 久久精品国产亚洲婷婷 | 精品伊人久久大香线蕉网站 | 5566成人免费视频观看 | 超级黄色毛片 | 男人j进入女人免费视频 |