91在线观看视频-91在线观看视频-91在线观看免费视频-91在线观看免费-欧美第二页-欧美第1页

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

《深度學(xué)習(xí)革命》書作者訪談,介紹AI的起源和發(fā)展

DPVg_AI_era ? 來源:未知 ? 作者:李倩 ? 2018-10-22 09:06 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

近日,學(xué)習(xí)算法先驅(qū)人物、《深度學(xué)習(xí)革命》一書作者Terrence Sejnowski在接受The Verge訪談時簡要介紹了AI的起源和發(fā)展,同時表示,關(guān)于“殺人AI”和“機器人代替人類”等概念更多是過度炒作的結(jié)果,因為人們對AI新技術(shù)的期待有些過于著急了。令他印象最深刻的技術(shù)是生成對抗網(wǎng)絡(luò)。

近日,計算神經(jīng)科學(xué)家、《深度學(xué)習(xí)革命》一書作者Terrence Sejnowski在接受采訪時表示,現(xiàn)在像“深度學(xué)習(xí)”和“神經(jīng)網(wǎng)絡(luò)”這樣的流行語無處不在,但是大多數(shù)對這些詞語的理解都被誤導(dǎo)了。

Sejnowski是研究學(xué)習(xí)算法的先驅(qū),《深度學(xué)習(xí)革命》(The Deep Learning Revolution)一書的作者,該書新版本將于下周由麻省理工學(xué)院出版社出版。

他認(rèn)為,關(guān)于“殺手AI”或“機器人超越人類”的話題熱議過于關(guān)注危機的一面,忽視了計算機科學(xué)和神經(jīng)科學(xué)領(lǐng)域中令人興奮的可能,也忽視了當(dāng)人工智能與人類智能時發(fā)生碰撞時會發(fā)生什么。

近日,Sejnkowski接受The Verge訪談時,談到了“深度學(xué)習(xí)”一詞為何突然變得無處不在,深度學(xué)習(xí)能做什么、不能做什么,以及對這一概念的炒作問題。

首先,我想問一下定義問題。人們幾乎可以完全互換地使用“人工智能”、“神經(jīng)網(wǎng)絡(luò)”、“深度學(xué)習(xí)”和“機器學(xué)習(xí)”等詞。但實際上這些詞指的是不同的東西,您能解釋一下有哪些不同嗎?

Sejnowski是研究學(xué)習(xí)算法的先驅(qū),《深度學(xué)習(xí)革命》一書的作者

人工智能(AI)的誕生可以追溯到1956年,當(dāng)時美國的一些工程師們決定編寫一個能夠嘗試模仿人類智能的計算機程序。而機器學(xué)習(xí)是在AI中逐步壯大的一個新領(lǐng)域。傳統(tǒng)的人工智能方法是編寫一個循序漸進(jìn)的程序來實現(xiàn)某件事情,而機器學(xué)習(xí)是收集大量試圖理解其內(nèi)容的數(shù)據(jù)。

比如你正在嘗試識別目標(biāo),你可以收集大量的圖像。然后,通過機器學(xué)習(xí)這個自動化的過程,就可以剖析各種功能,可以確定某個目標(biāo)是一輛汽車,而另一個目標(biāo)是一臺訂書機。

機器學(xué)習(xí)是一個非常大的領(lǐng)域,并且可以追溯到最初人們稱之為“模式識別”的階段,但現(xiàn)在的算法在數(shù)學(xué)上變得更加廣泛和復(fù)雜。在機器學(xué)習(xí)中包括受大腦啟發(fā)而建立的神經(jīng)網(wǎng)絡(luò),然后才是深度學(xué)習(xí)。深度學(xué)習(xí)算法具有特定的體系結(jié)構(gòu)。基本上可以這樣講,深度學(xué)習(xí)是機器學(xué)習(xí)的一部分,而機器學(xué)習(xí)是人工智能的一部分。

有哪些事情是機器學(xué)習(xí)能做,其他程序做不了的?

編寫程序非常耗費人力。在過去,計算機運算速度很慢,內(nèi)存又非常昂貴,以至于必須求助于邏輯,這就是計算機的工作原理,是控制信息的基本機器語言。因為計算機太慢了、計算成本太高了。

但現(xiàn)在,計算已經(jīng)越來越便宜,勞動力越來越昂貴。計算力甚至便宜到了這種程度:讓計算機去學(xué)習(xí),比讓人類編寫程序更有效率。從那時起,深度學(xué)習(xí)實際上已經(jīng)開始解決以前在計算機視覺和翻譯等領(lǐng)域的問題。而在此之前,人類的編程未踏足過這些領(lǐng)域。

深度學(xué)習(xí)是計算密集型活動,但用戶只需編寫一個程序,并提供不同的數(shù)據(jù)集,就可以解決不同的問題。用戶不必非要是相關(guān)領(lǐng)域?qū)<摇R虼耍瑢τ诖嬖诖罅繑?shù)據(jù)的任何事物,都可以產(chǎn)生成千上萬的應(yīng)用程序。

“深度學(xué)習(xí)”現(xiàn)在似乎無處不在。這個詞是如何變得如此流行的?

關(guān)于這個時間點我其實可以明確確認(rèn):就是在2012年12月的NIPS會議上,這是最大的人工智能會議。這次會議上,Geoff Hinton和他的兩個研究生表明,使用一個名為ImageNet的大型數(shù)據(jù)集,其中包含10000個類別和1000萬個圖像,并使用深度學(xué)習(xí)將分類錯誤率降低了20%。

一般來說,該數(shù)據(jù)集的圖像分類錯誤率每年只能降低不到1%。這一年的改進(jìn)頂了20年的研究。從此之后,閘門就被打開了。

深度學(xué)習(xí)的靈感來自大腦。那么這些不同領(lǐng)域之間,比如計算機科學(xué)和神經(jīng)科學(xué)之間,是如何協(xié)同工作的?

深度學(xué)習(xí)的靈感來自神經(jīng)科學(xué),最成功的深度學(xué)習(xí)網(wǎng)絡(luò)是Yann LeCun開發(fā)的卷積神經(jīng)網(wǎng)絡(luò)(CNN)。

考察一下CNN的架構(gòu),它不僅僅是由很多單元組成的,而且這些單元的連接方式基本反映出大腦的結(jié)構(gòu)。在關(guān)于視覺系統(tǒng)和視覺皮層的基礎(chǔ)研究中,表明大腦的一部分存在簡單細(xì)胞和復(fù)雜細(xì)胞。在CNN的架構(gòu)中,也存在簡單細(xì)胞和復(fù)雜細(xì)胞的等價結(jié)構(gòu),CNN的架構(gòu)設(shè)計直接來源于我們對視覺系統(tǒng)的理解。

Yann沒有盲目地試圖復(fù)制大腦皮層。他嘗試了許多不同的變化,但他選擇嘗試的是那些自然融合的變化。這是一個重要的觀察結(jié)果。我們在自然與人工智能的融合中可以學(xué)到很多東西,而且還有很長的路要走。

《深度學(xué)習(xí)革命》2018年版封面

我們對計算機科學(xué)的理解,在多大程度上取決于我們對大腦的理解程度?

我們現(xiàn)在研究和使用的大部分AI都是基于我們在上世紀(jì)60年代對大腦的了解。我們現(xiàn)在知道的更多了,可以將更多的知識融入到神經(jīng)網(wǎng)絡(luò)架構(gòu)中。

擊敗世界圍棋冠軍的AlphaGo的架構(gòu)中不僅包括皮質(zhì)模型,還包括大腦的另一部分模型,稱為基底神經(jīng)節(jié),這部分結(jié)構(gòu)對于制定一系列決策來實現(xiàn)目標(biāo)非常重要。有一種稱為時間差異的算法,是Richard Sutton在上世紀(jì)80年代開發(fā)的,將這種算法與深度學(xué)習(xí)相結(jié)合,能夠進(jìn)行人類前所未見的復(fù)雜游戲。

當(dāng)我們了解了大腦的結(jié)構(gòu),開始明白如何將其集成到人工系統(tǒng)中時,AI的功能將會越來越強大。

人工智能也會影響神經(jīng)科學(xué)嗎?

這兩個領(lǐng)域是并行的。神經(jīng)技術(shù)創(chuàng)新已經(jīng)取得了巨大的進(jìn)步,從一次記錄一個神經(jīng)元,到同時記錄數(shù)千個神經(jīng)元,同時記錄大腦中的多個部分的反應(yīng),可以說完全開辟了一個全新的世界。

我認(rèn)為,人工智能與人類智能之間存在著一種趨同。隨著我們越來越多地了解大腦的工作原理,這些新知識將會反映在AI中。而與此同時,我們實際上也創(chuàng)造出了一整套可用于理解大腦的學(xué)習(xí)理論,可以讓我們分析成千上萬的神經(jīng)元及其活動是如何產(chǎn)生的。所以說,神經(jīng)科學(xué)和人工智能之間存在著這種相互反饋和循環(huán),我認(rèn)為這一點更令人興奮,也更為重要。

您即將出版的《深度學(xué)習(xí)革命》一書中討論了許多不同的深度學(xué)習(xí)應(yīng)用,從自動駕駛汽車到交易。您覺得哪個領(lǐng)域最有趣?

我覺得是生成對抗網(wǎng)絡(luò)(GAN)。如果使用傳統(tǒng)的神經(jīng)網(wǎng)絡(luò),你給出一個輸入,得到一個輸出。 而GAN能夠在沒有輸入的情況下生成輸出。

我第一次聽說GAN的時候,正值由網(wǎng)絡(luò)創(chuàng)建的假視頻風(fēng)行的時候。GAN真的會產(chǎn)生足以亂真的假視頻,對吧?

從某種意義上說,它們是在生成內(nèi)部活動。事實證明,人的大腦就是這樣運作的。你可以看到并理解一些東西,然后閉上眼睛,開始想象實際并不存在的東西。你的腦子里會產(chǎn)生一個視覺圖像,周圍安靜下來時,你會有想法。那是因為你的大腦是生成性的。現(xiàn)在,這種新型網(wǎng)絡(luò)可以生成從未存在過的新模式。

所以打個比方,你可以給GAN輸入幾百張汽車圖片,它就會創(chuàng)建內(nèi)部結(jié)構(gòu),可以生成實際上不存在的汽車的新圖像,這些圖像看起來完全和汽車相似。

另一方面,您認(rèn)為哪些想法或概念可能被過度炒作了?

沒有人可以預(yù)測或想象這種新技術(shù)的引入會對未來產(chǎn)生什么影響。這里邊當(dāng)然存在炒作。我們還沒有解決真正困難的問題。現(xiàn)在我們還沒有實現(xiàn)通用智能,但人們都說機器人就在那里靜靜等著,等著取代人類,盡管目前機器人的發(fā)展遠(yuǎn)遠(yuǎn)落后于AI,因為其實模仿人類的身體比模仿大腦更加復(fù)雜。

這里以一項技術(shù)進(jìn)步為例:激光。激光是在大約50年前發(fā)明的,當(dāng)時的激光發(fā)射器大到占據(jù)了整個一間房。從那時起,一直到現(xiàn)在的激光器可以縮小到做講演時使用的“激光筆”大小,而且僅售5美元,激光技術(shù)的商業(yè)化過程長達(dá)50年。

同樣的事情也將發(fā)生在像自動駕駛汽車之類的技術(shù)上。自駕車可能明年無法普及,10年內(nèi)無法普及,要普及可能需要50年,但重點是,在整個普及過程中,技術(shù)會不斷進(jìn)步,會變得越來越靈活和安全,與我們的交通運輸網(wǎng)絡(luò)的組織形式更加兼容。現(xiàn)在的問題是,人們太著急了,過分期待新技術(shù)盡快到來,其實假以時日,新技術(shù)總會到來的。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • AI
    AI
    +關(guān)注

    關(guān)注

    88

    文章

    35105

    瀏覽量

    279560
  • 機器學(xué)習(xí)
    +關(guān)注

    關(guān)注

    66

    文章

    8502

    瀏覽量

    134585
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5561

    瀏覽量

    122789

原文標(biāo)題:《深度學(xué)習(xí)革命》作者:GAN令我驚艷,現(xiàn)在的人們對AI操之過急了

文章出處:【微信號:AI_era,微信公眾號:新智元】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    任正非說 AI已經(jīng)確定是第四次工業(yè)革命 那么如何從容地加入進(jìn)來呢?

    以下是一些可以從容加入AI第四次工業(yè)革命的方法: 一、教育與學(xué)習(xí)方面 基礎(chǔ)理論學(xué)習(xí) 深入學(xué)習(xí)數(shù)學(xué)知識,特別是線性代數(shù)、概率論與數(shù)理統(tǒng)計、微積
    發(fā)表于 07-08 17:44

    【「零基礎(chǔ)開發(fā)AI Agent」閱讀體驗】+ 入門篇學(xué)習(xí)

    很高興又有機會學(xué)習(xí)ai技術(shù),這次試讀的是「零基礎(chǔ)開發(fā)AI Agent」,作者葉濤、管鍇、張心雨。 大模型的普及是近三年來的一件大事,萬物皆可大模型已成為趨勢。作為大模型開發(fā)應(yīng)用中重要組
    發(fā)表于 05-02 09:26

    【「零基礎(chǔ)開發(fā)AI Agent」閱讀體驗】+關(guān)于AI Agent開發(fā)入門的第一印象與相關(guān)官方文檔和社區(qū)資料的內(nèi)容補充

    ://agents.baidu.com/ 介紹扣子平臺的官方網(wǎng)站是: https://www.coze.cn 我目前所能想到的補充內(nèi)容就是這些,我想很薄,它多數(shù)只是我們學(xué)習(xí)知識的引子,我們要在
    發(fā)表于 04-22 18:16

    數(shù)據(jù)采集在AI行業(yè)的應(yīng)用、優(yōu)勢及未來發(fā)展趨勢

    人工智能(AI)作為21世紀(jì)最具革命性的技術(shù)之一,正在深刻改變各行各業(yè)。AI的核心驅(qū)動力是數(shù)據(jù),而數(shù)據(jù)采集則是AI發(fā)展的基石。無論是機器
    的頭像 發(fā)表于 03-07 14:12 ?655次閱讀
    數(shù)據(jù)采集在<b class='flag-5'>AI</b>行業(yè)的應(yīng)用、優(yōu)勢及未來<b class='flag-5'>發(fā)展</b>趨勢

    【「AI Agent應(yīng)用與項目實戰(zhàn)」閱讀體驗】書籍介紹

    結(jié)構(gòu)如下: 可以看到整體的內(nèi)容是非常豐富的,對于一本89元的來說,除第一章是總體介紹外,包含10個應(yīng)用案例,可以說是超值了,平均一個案例還不到9塊錢,都不夠一杯奶茶,所以還有什么理由不掌握呢
    發(fā)表于 03-05 20:40

    AI Agent 應(yīng)用與項目實戰(zhàn)》----- 學(xué)習(xí)如何開發(fā)視頻應(yīng)用

    再次感謝發(fā)燒友提供的閱讀體驗活動。本期跟隨《AI Agent 應(yīng)用與項目實戰(zhàn)》這本書學(xué)習(xí)如何構(gòu)建開發(fā)一個視頻應(yīng)用。AI Agent是一種智能應(yīng)用,能夠根據(jù)用戶需求和環(huán)境變化做出相應(yīng)響應(yīng)。通常基于
    發(fā)表于 03-05 19:52

    FPGA+AI王炸組合如何重塑未來世界:看看DeepSeek東方神秘力量如何預(yù)測......

    的強化學(xué)習(xí)架構(gòu)正在改寫芯片設(shè)計規(guī)則——通過自主進(jìn)化算法,F(xiàn)PGA布局布線效率提升300%,這或許預(yù)示著芯片設(shè)計將進(jìn)入"AI自編程"時代。在這場智能芯片革命中,中國企業(yè)
    發(fā)表于 03-03 11:21

    軍事應(yīng)用中深度學(xué)習(xí)的挑戰(zhàn)與機遇

    人工智能尤其是深度學(xué)習(xí)技術(shù)的最新進(jìn)展,加速了不同應(yīng)用領(lǐng)域的創(chuàng)新與發(fā)展深度學(xué)習(xí)技術(shù)的發(fā)展深刻影響
    的頭像 發(fā)表于 02-14 11:15 ?535次閱讀

    機械革命AI PC接入DeepSeek大模型

    專注于高性能移動解決方案的知名品牌——機械革命(MECHREVO),宣布旗下AI PC產(chǎn)品線正式接入中國開源大模型DeepSeek!憑借機械革命無與倫比的產(chǎn)品性能與深度定制的適配優(yōu)化,
    的頭像 發(fā)表于 02-10 09:50 ?577次閱讀

    人工智能和機器學(xué)習(xí)以及Edge AI的概念與應(yīng)用

    作者:DigiKey Editor 人工智能(AI)已經(jīng)是當(dāng)前科技業(yè)最熱門的話題,且其應(yīng)用面涉及人類生活的各個領(lǐng)域,對于各個產(chǎn)業(yè)都帶來相當(dāng)重要的影響,且即將改變?nèi)祟愇磥?b class='flag-5'>發(fā)展的方方面面。本文將為您
    的頭像 發(fā)表于 01-25 17:37 ?928次閱讀
    人工智能和機器<b class='flag-5'>學(xué)習(xí)</b>以及Edge <b class='flag-5'>AI</b>的概念與應(yīng)用

    AI自動化生產(chǎn):深度學(xué)習(xí)在質(zhì)量控制中的應(yīng)用

    隨著科技的飛速發(fā)展,人工智能(AI)與深度學(xué)習(xí)技術(shù)正逐步滲透到各個行業(yè),特別是在自動化生產(chǎn)中,其潛力與價值愈發(fā)凸顯。深度
    的頭像 發(fā)表于 01-17 16:35 ?692次閱讀
    <b class='flag-5'>AI</b>自動化生產(chǎn):<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>在質(zhì)量控制中的應(yīng)用

    AI干貨補給站 | 深度學(xué)習(xí)與機器視覺的融合探索

    ,幫助從業(yè)者積累行業(yè)知識,推動工業(yè)視覺應(yīng)用的快速落地。本期亮點預(yù)告本期將以“深度學(xué)習(xí)與機器視覺的融合探索”為主題,通過講解深度學(xué)習(xí)定義、傳統(tǒng)機器視覺與
    的頭像 發(fā)表于 10-29 08:04 ?574次閱讀
    <b class='flag-5'>AI</b>干貨補給站 | <b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>與機器視覺的融合探索

    AI大模型與深度學(xué)習(xí)的關(guān)系

    AI大模型與深度學(xué)習(xí)之間存在著密不可分的關(guān)系,它們互為促進(jìn),相輔相成。以下是對兩者關(guān)系的介紹: 一、深度
    的頭像 發(fā)表于 10-23 15:25 ?2879次閱讀

    AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新》第二章AI for Science的技術(shù)支撐學(xué)習(xí)心得

    人工智能在科學(xué)研究中的核心技術(shù),包括機器學(xué)習(xí)深度學(xué)習(xí)、神經(jīng)網(wǎng)絡(luò)等。這些技術(shù)構(gòu)成了AI for Science的基石,使得AI能夠處理和分析
    發(fā)表于 10-14 09:16

    AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新》第一章人工智能驅(qū)動的科學(xué)創(chuàng)新學(xué)習(xí)心得

    ,無疑為讀者鋪設(shè)了一條探索人工智能(AI)如何深刻影響并推動科學(xué)創(chuàng)新的道路。在閱讀這一章后,我深刻感受到了人工智能技術(shù)在科學(xué)領(lǐng)域的廣泛應(yīng)用潛力以及其帶來的革命性變化,以下是我個人的學(xué)習(xí)心得: 1.
    發(fā)表于 10-14 09:12
    主站蜘蛛池模板: 欧美一区二区在线观看视频 | 日韩特级 | 91九色蝌蚪在线 | 天堂一区二区三区在线观看 | 色综合久久天天综合观看 | 伊人网站在线 | 国模私拍在线 | 色成人综合网 | 色综合色综合色综合色综合网 | 中国理论片 | 久久激情五月 | 国产主播一区二区 | 天天好比 | 最近2018年中文字幕大全一 | 日本色www| 欧美一级特黄aaaaaa在线看首页 | 精品香港经典三级在线看 | 放荡的俄罗斯美女bd | 一级午夜 | 激情婷婷综合久久久久 | 黄色网 在线播放 | 午夜精品久久久久久久久 | 日本污全彩肉肉无遮挡彩色 | 亚洲va中文字幕无码 | 欧美一级片网站 | 欧美一级视频免费看 | 天堂网最新 | 无遮挡一级毛片视频 | 免费一级特黄特色大片在线观看 | 久久免费精品国产72精品剧情 | 国产精品久久久久久久成人午夜 | 奇米影视四色首页手机在线 | 欧美在线一级视频 | 老师别揉我胸啊嗯上课呢视频 | 国产成人精品系列在线观看 | 亚洲综合色婷婷 | 一本高清在线视频 | 日日操夜夜操免费视频 | 钻石午夜影院 | 国产美女视频一区二区三区 | 天天干2018 |