近年來,傳統汽車車廠與互聯網企業選擇了兩條不同的道路來發展無人車。傳統汽車廠商希望先發展先進輔助駕駛系統(ADAS),再逐步過渡到人車協同駕駛,最終實現無人車。而互聯網企業,則希望從低層次的普通無智能車輛一步跳躍式發展至全自動無人車。隨著工業界對無人車的投入力度加大,無人車相關研究也獲得了大量研究者的關注。因此,本報告圍繞無人車的環境感知、決策和控制三個主要方面,介紹近幾年國內學者在無人車領域的主要研究進展,分析國際學科發展趨勢及國內的研究特色與差距。
一、引言
無人車是指通過車載傳感系統感知環境,自動規劃行車路線并控制車輛實現預定駕駛目標的智能汽車。依據自動駕駛程度的不同,美國高速公路安全管理局(NHTSA)將無人車劃分為 5 個層次,而美國汽車工程師學會(SAE)則將智能汽車劃分為 6 個層次[1]。雖然這兩種劃分方式在細節上存在差異,但是它們都是從低層次的普通無智能車輛,逐步過渡到最高層次的全自動無人車。
近年來,傳統汽車車廠與互聯網企業選擇了兩條不同的道路來發展無人車。傳統汽車廠商希望先發展先進輔助駕駛系統(ADAS),再逐步過渡到人車協同駕駛,最終實現無人車。而互聯網企業,則希望從低層次的普通無智能車輛一步跳躍式發展至全自動無人車。隨著工業界對無人車的投入力度加大,無人車相關研究也獲得了大量研究者的關注。因此,本報告圍繞無人車的環境感知、決策和控制三個主要方面,介紹近幾年國內學者在無人車領域的主要研究進展,分析國際學科發展趨勢及國內的研究特色與差距。
二、我國無人車的發展現狀
(一)無人車的環境感知
感知系統是無人車系統的重要組成部分。感知主要是指運用傳感器、定位與通信等技術,來獲取、整合車輛行駛時外部環境信息。其主要功能包括車道檢測、交通參與者檢測(車輛、行人等)、交通標志檢測和其他車外環境檢測等。
1.車道檢測
近年來研究者提出了多種車道檢測方法。例如,清華大學的研究者采用了一種基于顏色信息的方法,利用道路尺寸形狀和動態信息檢測車道,可以很好地將遮擋和真實的車道線區分開[2]。常見的方法對于結構化道路效果較好,但在車道線并不一定清晰或存在的情況下容易誤判。因此,目前很多研究機構將重心更多轉移到了對非結構化道路的檢測 , 即對二級道路或越野道路的檢測。
2.交通標志檢測
交通標志檢測主要包括兩個基本環節:交通標志的檢測和判別[3,4]。目前常用的交通標志檢測方法包括邊緣檢測、顏色分割[5]等;而常用的交通標志判別方法,主要方法包括基于神經網絡[6]、基于形狀(模式匹配)[7]和基于顏色等方法。目前,越來越多的研究將重心轉向神經網絡方法,普遍可以達到95% 以上的識別率。
3.車輛檢測
車輛檢測可使用毫米波段雷達、視覺傳感器等多種設備。中國科學院自動化研究所的研究者對于最近幾年該領域的研究方法進行了很好的總結[8]。目前主要的檢測過程大致分為三步:
(1)假設產生,即定位感興趣的區域。常用方法有基于二維圖像的先驗知識、基于立體視覺、基于運動產生的光流等。
(2)假設驗證,即核實車輛是否存在。常用方法有基于顯性規則(基于模板)和基于隱形規則(基于外觀)兩種。
(3)車輛跟蹤[9],需要根據先前幀的車輛位置推測出現在的車輛位置。
由于攝像頭采集的本質是三維環境在二維投影上的表征,不可避免地會損失部分深度信息,因此近年來基于立體視覺技術的道路圖像采集得到更多的關注。相對于視覺傳感器,毫米波雷達的優點是不受光線、天氣等因素的干擾,因此與圖像數據融合后可以得到更準確可靠的檢測結果。
4.行人檢測
近年來,研究者提出了多種基于視覺傳感器和紅外線傳感器的行人檢測方法。其過程可分為三步:行人定位[10]、行人識別與行人跟蹤。行人定位方面,我國中科院電子所提出了基于色彩分層模型的實時多目標魯棒跟蹤算法[10]。行人識別方面,香港中文大學使用卷積神經網絡將錯誤率降至 11%[11],而中科院計算研究所[12]同時最小化經驗風險與表征學習風險,區別化學習不同人體結構特征,并以此提高行人識別率。行人跟蹤方面則主要使用卡爾曼濾波、Condensation 算法和動態貝葉斯網絡等方法。特別是隨著深度學習技術的成功應用,行人檢測的精度在最近幾年中有了顯著的提高。
5.聯合檢測
為了應對單個傳感器數據可靠性低、有效探測范圍存在盲區等局限性,目前在無人車感知系統構建時,一般使用多種傳感器進行數據采集,利用多傳感器信息融合技術對檢測數據進行分析、綜合與平衡,通過互補特性增強容錯性,從而得到所需要的檢測信息。
(二)無人車的決策
當前無人駕駛決策主要研究短期軌跡規劃。目前,該領域的研究的熱點與難點主要集中在如何合理考慮車輛動力學特征、避撞以及節能舒適三類約束,規劃有效的軌跡。
1.考慮車輛動力學特性約束的無人駕駛軌跡規劃
軌跡規劃需要充分考慮車輛動力學系統具有高度非線性、時變性以及各類機械約束等特點,保證軌跡的可行性[13,14]。清華大學[13]的研究者基于車輛運動學特性進行車輛軌跡規劃,其控制率簡單、易實現。吉林大學[14]的研究者在研究無人駕駛動力學特性約束時,提出了載荷轉移率等高線圖以及載荷轉移率防側翻指標,并驗證了其作為無人駕駛軌跡規劃的側傾約束指標的有效性。
2.考慮障礙物避撞的無人駕駛軌跡規劃
避障主要研究如何搜尋可供軌跡規劃的空間,進行動作決策,最后規劃車輛軌跡以避免行駛過程中發生碰撞。國防科技大學的研究學者就采用激光雷達檢測障礙物以確定原始運動軌跡,并采用共軛梯度非線性最優化算法以及 Bezier 插值方法修正原始運動軌跡,最終實現避障軌跡規劃[15]。
3.考慮能耗和舒適度的無人駕駛軌跡規劃
駕駛員在不同道路工況下,對時間、距離、能耗以及舒適度等要求的偏重不一。在實際應用中,如何針對不同情況綜合考慮這些軌跡規劃目標,是目前的研究難點之一。時間最短或軌跡最短的行駛軌跡并不一定具有最低能耗和最佳舒適度。香港城市大學[16]的研究者從能耗的角度出發,提出以最高能量效率為優化目標的軌跡規劃算法,進行軌跡和速度規劃。清華大學[17]的研究者提出了計算受試車輛的加速度變化給出舒適性指標的評估方法。
三、無人車的控制
智能汽車的無人化使得車輛在融合自身狀態、路面交通等信息的基礎上,在滿足橫向穩定性的前提下實現運行軌跡跟蹤的自動控制。其中,軌跡跟隨控制主要是研究如何通過控制車輛的轉向系統以及制動/ 驅動系統使得車輛能夠以期望的速度沿著期望的路線行駛, 從而實現車輛的無人駕駛操作。
1.車輛軌跡跟蹤控制
考慮到很難建立精確的車輛動力學模型、行駛的工況復雜多變,車輛軌跡的精確跟隨控制具有極大的挑戰。目前絕大部分關于軌跡跟隨的研究方法中,從原理上講主要是由預瞄理論和模型預測理論衍生而來。
基于最優預瞄控制理論的算法可以分為兩類:
一類是基于預瞄假設以及最優曲率控制原則,即駕駛員根據前方軌跡一點的信息和當前汽車的運動狀態估計得到的到達該預期點的誤差,計算出一個最優的圓弧軌跡,并由軌跡圓弧曲率與轉向盤轉角的對應關系來確定方向盤的轉角輸入[18]。由于使用的是幾何車輛運動模型,而幾何車輛運動模型僅在車速較低的情況下才能比較真實的代表實際的車輛響應,所以該方法只適用于低速工況下的軌跡跟隨控制。
另一類方法是以車輛的動力學模型為基礎,通過建立最優的圓弧軌跡與車輛期望的運動學或動力學物理量,然后對其進行反饋跟蹤控制,從而間接實現最優的軌跡跟隨控制。合肥工業大學結合車輛道路相對位置以及車身狀態信息,設計了期望橫擺加速度生成器[19];吉林大學根據預瞄—跟隨駕駛員模型理論,對側向和縱向都建立了基于加速度反饋的跟隨控制算法[20]。
與此同時,美國多所高校和企業合作將這種方法應用于參加DARPA 挑戰賽的無人駕駛汽車的上層控制中[21],無論是在車速較高的行駛工況還是在道路環境比較復雜場景中,都能夠取得比較好的控制效果。
2.車輛縱向節能控制
相比較于傳統車輛,無人駕駛智能車在縱向運動過程中通過節能優化能夠有效降低汽車能源消耗。一方面從速度規劃的角度來講,通過一定的優化策略對車輛駕駛進行決策和綜合優化[22-24],可以達到降低能耗的目的,另一方面,可以將車輛的速度和動力傳動控制結合起來以提高整車效率[25-28]。隨著信息獲取程度的不斷加深,車輛縱向節能控制可以分為三個不同的階段:不考慮道路和交通信息的單車縱向速度控制、考慮道路和交通信息的單車縱向速度控制及基于車—車、車—路通信的多車縱向速度控制。
目前實際應用于汽車上的縱向速度控制系統多數為沒有考慮道路和交通信息的單車優化系統。主要集中于改善發動機工作點、擋位在線優化以及油門和制動踏板操作合理化等[29-31]。傳統的自適應巡航控制系統主要針對的是駕駛舒適性和行駛安全性,沒有考慮車輛行駛的經濟性,北京理工大學學者基于車輛行駛經濟性,在自適應巡航控制過程中研究車輛加速過程的經濟性策略,構建出以發動機油耗為性能指標的最優控制問題[32]。清華大學采設計了以降低油耗為目標的分層式自適應巡航控制器,實驗表明該策略在節能和跟蹤方面具有很好的效果[33]。
車聯網和地理信息系統在汽車以及交通系統中的充分應用,使車輛不再是交通系統中的單獨個體,而是與外界車輛和基礎設施有著信息聯系的具有高度自動化的行駛工具。車輛縱向速度控制從單個車輛軌跡和能量優化逐漸擴展到多車縱向速度協調控制。車輛縱向速度控制如何對智能交通系統的上層調度進行配合,實現車輛縱向速度控制與交通系統智能化的整合與提升,也是當前研究的技術熱點[34,35]。
3.車輛橫向穩定性控制
無人駕駛智能車橫向穩定性控制是以傳統的車輛穩定性控制基礎上提出來,主要通過兩種技術途徑實現。一種是基于轉向的穩定性控制系統;另外一種是直接橫擺力矩控制, 能夠通過改變左、右兩側車輪的縱向力產生附加的橫擺力矩來控制車輛的穩定性。
基于轉向的穩定性控制系統主要包括前輪轉向控制、后輪轉向控制以及四輪轉向控制。對于前輪轉向,日韓研究人員基于側向輪胎力反饋提出了主動前輪轉向控制,通過控制側向輪胎力保證了轉彎的穩定性并能很精確的預測車輛的狀態[36];我國學者將主動前輪轉向控制和直接橫擺力矩控制結合起來,構成了底盤集成控制系統[37]。
直接橫擺力矩控制主要通過控制內側和外側車輪的縱向力矩分配來控制車輛的橫擺力矩,進而提高車輛的穩定性。歐美學者應用模型預測控制理論對主動前輪轉向及差動制動的協調控制進行了研究[38];日韓學者采用動態逆的方法對集成控制進行了研究[39]。為了提高車輛的橫擺穩定性,增益可調的 LPV 控制律被用來設計集成控制器,并基于 LMI 框架對控制器進行了分析[40]。吉林大學提出了一種基于模型預測控制、采用分層集成控制結構的控制算法,并研究了基于二次規劃的驅動力分配方法[41]。
三、國內外發展比較
國內無人駕駛技術的發展呈現百花齊放、百家爭鳴的態勢,在一些方面取得了全球領先的進展。由國家自然基金委員會資助,自 2009 年起每年舉辦的“中國無人智能車未來挑戰賽”是目前國際上持續時間最長的無人車比賽,吸引了來自眾多國內高校及研究所參賽,極大地推動了國內無人車技術的發展。2016 年,清華大學、西安交通大學和中國科學院自動化研究聯合推出了新的無人車智能測試理論、評價系統和量化評估方法,在2016 年和 2017 年的“中國無人智能車未來挑戰賽”取得了成功應用[17]。
目前,傳統車廠基本都采用分解式設計,從環境感知,決策和控制三方面分別研發無人車的算法實現。而一些新興互聯網企業開始采用端對端式來實現無人車,接受輸入感知的圖像等信息直接輸出控制命令。而無論是哪種方式都越來越多地借助深度學習技術。國內的無人車研發機構和創業公司在這兩方面都展開了研究。
但整體來看,無論是實驗行駛距離還是人工干預程度,國內的無人駕駛技術相較國外依然存在差距,特別是國內的相關硬件研發明顯滯后于國外,專用的計算芯片和一些特定傳感器的研發尚待奮起直追。
四、我國發展趨勢與對策
雖然目前無人車產業化仍存在各種問題,但市場對于汽車主動安全技術、智能化技術的持續增長的需求,推動了無人駕駛技術由輔助駕駛逐步向完全無人化演進。當前,國內外對于無人車前景普遍表示樂觀。
我國無人車借此東風,正在如火如荼地發展中,眾多新興無人車創業公司如雨后春筍般成立起來。但可以預見的是,無人車的研發到應用的過程可能會持續相當長的時間,需要大量人才和資金的投入。希望在人工智能大潮的背景下,各大高校向無人車領域適當關注,引領更多學子投入相關研究,為無人車的發展做好人才儲備。
在可預期的未來,隨著傳感器技術及計算機技術的發展,無人駕駛汽車使用的各種傳感器(如激光雷達等)在性能上將會取得很大提升,價格也將大幅降低,滿足一般消費者的承受能力 , 這將會進一步地推動無人駕駛車的市場化。
五、結束語
本報告圍繞無人車的環境感知、決策和控制三個主要方面,介紹國內主要研究進展,分析國際學科發展趨勢及國內的研究特色與差距。總結起來,國內學者在無人駕駛研究上取得了一批國際水平的成果,但在以后的工作中還需要更加深入推進相關理論和技術的研發,并積極推進相關人才培養。
參考文獻
[1] SAE International Standard J3016,2016.
[2] Cheng M,Zhang G,Mitra N,et al. Global Contrast based Salient Region Detection[C].IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society,2011,409-416.
[3] Alvarez J,Lopez A. Road Detection based on Illuminant Invariance[J].IEEE Transactions on Intelligent Transportation Systems,2011,12(1):184-193.
[4] Guo C,Mita S,McAllester D. Robust Road Detection and Tracking in Challenging Scenarios based on Markov Random Fields with Unsupervised Learning[J].IEEE Transactions on intelligent transportation systems,2012, 13(3):1338-1354.
[5] Lu X,Wang Y,Zhou X,et al. Traffic Sign Recognition via Multi-Modal Tree-Structure Embedded Multi-Task Learning[J].IEEE Transactions on Intelligent Transportation Systems,2017,18(4):960-972.
[6] Hu W,Zhuo Q,Zhang C,et al. Fast Branch Convolutional Neural Network for Traffic Sign Recognition[J]. IEEE Intelligent Transportation SystemsMagazine,2017,9(3):114-126.
[7] Zeng Y,Xu X,Shen D,et al. Traffic Sign Recognition Using Kernel Extreme Learning Machines With Deep Perceptual Features[J].IEEE Transactions on Intelligent Transportation Systems,2017,18(6):1647-1653.
[8] 張慧,王坤峰,王飛躍 . 深度學習在目標視覺檢測中的應用進展與展望[J].自動化學報,2017,43(8): 1289-1305.
[9] 管皓,薛向陽,安志勇 . 深度學習在視頻目標跟蹤中的應用進展與展望[J].自動化學報,2016,42(6): 834-847.
[10] Gao S,Han Z,Li C,et al. Real-time Multipedestrian Tracking in Traffic Scenes via an RGB-D-based Layered Graph Model[J].IEEE Transactions on Intelligent Transportation Systems,2015,16(5):2814-2825.
[11] Tian Y,Luo P,Wang X,et al. Deep Learning Strong Parts for Pedestrian Detection[C].Proceedings of the IEEE international conference on computer vision. 2015,1904-1912.
[12] Yao H,Zhang S,Zhang Y,et al. Deep Representation Learning with Part Loss for Person Re-identification[J]. arXiv preprint arXiv:1707.00798,2017.
[13] Liu W,Li Z,Li L,et al. Parking Like a Human:A Direct Trajectory Planning Solution[J].IEEE Transactions
onIntelligentTransportation Systems,2017(. Inpublishing).
[14] Zhang X,Yang Y,Guo K,et al. Contour Line of Load Transfer Ratio for Vehicle Rollover Prediction[J]. Vehicle System Dynamics,2017,DOI:10.1080/00423114.2017.1321773.
[15] Li X,Sun Z,Cao D,et al. Real-Time Trajectory Planning for Autonomous Urban Driving:Framework, Algorithms,and Verifications[J].IEEE/ASME Transactions on Mechatronics,2016,21(2):740-753.
[16] Liu S,Sun D. Optimal Motion Planning of a Mobile Robot with Minimum Energy Consumption[C].2011 IEEE/ ASME International Conference on Advanced Intelligent Mechatronics(AIM). 2011,43-48.
[17] Li L,Huang W,Liu Y,et al. Intelligence Testing for Autonomous Vehicles:A New Approach[J].IEEE Transactions on Intelligent Vehicles,2016,1(2):158-166.
[18] Ding H,GuoK,Wan F etal.AnAnalyticalDriverModelforArbitrary Path Following atVaryingVehicleSpeed[J]. International Journal of Vehicle Autonomous Systems,2007,5(3-4):204-218.
[19] 王家恩,陳無畏,王檀彬,等 . 基于期望橫擺角速度的視覺導航智能車輛橫向控制[J].機械工程學報, 2012,48(4):108-115.
[20] 丁海濤,郭孔輝,李飛,等. 基于加速度反饋的任意道路和車速跟隨控制駕駛員模型[J].機械工程學報,2010,46(10):116-120.
[21] Levinson J,Askeland J,Becker J,et al. Towards Fully Autonomous Driving:Systems and Algorithms[C]// Intelligent Vehicles Symposium(IV),2011 IEEE. IEEE,2011:163-168.
[22] Ferguson D,Dolgov D. Modifying speed of an autonomous vehicle based on traffic conditions[P].U.S. Patent 9, 381,918,2016-7-5.
[23] Milanés V,Shladover S,Spring J,et al. Cooperative Adaptive Cruise Control in Real Traffic Situations[J]. IEEE Transactions on Intelligent Transportation Systems,2014,15(1):296-305.
[24] Moser D,Schmied R,Waschl H,et al. Flexible Spacing Adaptive Cruise Control Using Stochastic Modeling Predictive Control[J].IEEE Transaction on Control System Technology,2017,DOI:10.1109/ TCST.2017.2658193.
[25] Liu T,Hu X,Li S,et al. Reinforcement Learning Optimized Look-Ahead Energy Management of a Parallel Hybrid Electric Vehicle[J].IEEE/ASME Transactions on mechatronics,2017,22(4):1497-1507.
[26] Huang D,Xie H,Ma H,et al. Driving Cycle Prediction Model based on Bus Route Features[J].Transportation Research Part D,2017,54:99-113.
[27] Li L,Yang C,Yan B,et al. Driving-behavior-aware Stochastic Model Predictive Control for Plug-in Hybrid Electric Buses[J].Applied Energy,2016,162:868-879.
[28] Yang C,Li L,You S,et al. Cloud Computing-based Energy Optimization Control Framework for Plug-in Hybrid Electric Bus[J].Energy,2017,125:11-26.
[29] Qin H,Long S,Yu K. Simulation Research on the Shift Schedule in the Auto with Automated Manual Transmission based on Cruise Gear Shift Program[J].Advanced Mater Res.,2013,712:2160-2163.
[30] Hofman T,DaiC.Energyefficiencyanalysisandcomparisonoftransmissiontechnologiesforanelectricvehicle[C]// Proceedings of IEEE Vehicle Power and Propulsion Conference(VPPC),Lille,2010:1-6.
[31] Mashadi B,Kazemkhani A,Lakeh R. An automatic gear-shifting strategy for manual transmissions[J].Proc Inst Mech Eng Part I:J Syst Control Eng,2007,221:757-768.
[32] 何瑋 . 汽車智能巡航技術發展綜述[J].北京汽車,2006,3:36-39.
[33] Li S,Li K,Wang J. Economy-oriented Vehicle Adaptive Cruise Control with Coordinating Multiple Objectives Function[J].International Journal of Vehicle Mechanics and Mobility,2013,51(1):1-17
[34] 王***,宋鵬飛,張蘊靈 . 智能交通系統發展與展望[J].公路,2012,5(5):217-222.
[35] 李清泉,熊煒,李宇光 . 智能道路系統的體系框架及其關鍵技術研究[J].交通運輸系統工程與信息, 2007,8(1):40-48.
[36] Nam K,Fujimoto H,Hori Y. Advanced Motion Control of Electric Vehicles based on Robust Lateral Tire Force Control via Active Front Steering[J].Mechatronics,IEEE/ASME Transactions on,2014,19(1):289-299.
[37] Zhang H and Wang J. Vehicle Lateral Dynamics Control Through AFS/DYC and Robust Gain-Scheduling Approach
[J].IEEE Transactions on Vehicular Technology,2016,65(1):489-494.
[38] Di C,Tseng H,Bernardini D. Vehicle Yaw Stability Control by Coordinated Active Front Steering and Differential Brakinginthe Tire SideslipAnglesDomain[J].IEEE Transactions onControl Systems Technology,2013,21(4): 1236-1248.
[39] Yang I,Byun S,Seo B. Integrated control systems of active front steering and direct yaw moment control using dynamic inversion[C]// 2013 IEEE Intelligent Vehicles Symposium. Gold Coast:IEEE,2013:1303-1306.
[40] Doumiati M,Sename O,Dugard L. Integrated Vehicle Dynamics Control via Coordination of Active Front Steering and Rear Braking[J].European Journal of Control,2013,19(2):121-143.
[41] Ren B,Chen H,Zhao H,et al. MPC-based yaw stability control in in-wheel-motored EV via active front steering and motor torque distribution[J].Mechatronics,2016,38:103-114.
-
adas
+關注
關注
309文章
2196瀏覽量
208892 -
無人車
+關注
關注
1文章
304瀏覽量
36578
原文標題:深度 | 全面解析2018無人車研究報告
文章出處:【微信號:IV_Technology,微信公眾號:智車科技】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
焊接電壓波動分析儀的應用與研究進展
高能點焊電源技術在現代工業制造中的應用與研究進展
![高能點焊電源技術在現代工業制造中的應用與<b class='flag-5'>研究進展</b>](https://file1.elecfans.com/web1/M00/F5/0C/wKgaoWc1ZpWAUYlOAAJZ67GG_-0175.png)
從發展歷史、研究進展和前景預測三個方面對混合鍵合(HB)技術進行分析
![從發展歷史、<b class='flag-5'>研究進展</b>和前景預測三個方面對混合鍵合(HB)技術進行<b class='flag-5'>分析</b>](https://file1.elecfans.com/web1/M00/F5/9B/wKgZoWc_99eATJtFAAA2Ja83BR0261.png)
上海光機所在多路超短脈沖時空同步測量方面取得研究進展
![上海光機所在多路超短脈沖時空同步測量方面取得<b class='flag-5'>研究進展</b>](https://file1.elecfans.com//web2/M00/0B/40/wKgZomcxMuiAVnfCAACqXgMeW2g995.png)
高光譜成像技術在生物物證領域的研究進展2.0
![高光譜成像技術在生物物證<b class='flag-5'>領域</b>的<b class='flag-5'>研究進展</b>2.0](https://file1.elecfans.com//web1/M00/F3/E8/wKgaoWcguCWAWt-TAAcG12g3QAM956.png)
AI大模型的最新研究進展
基于無人機遙感的作物長勢監測研究進展
![基于<b class='flag-5'>無人</b>機遙感的作物長勢監測<b class='flag-5'>研究進展</b>](https://file1.elecfans.com//web2/M00/FC/45/wKgaomaQybKAcbe4AACcar95Slo209.png)
導熱紙(膜)的研究進展 | 晟鵬技術突破導熱芳綸紙
![導熱紙(膜)的<b class='flag-5'>研究進展</b> | 晟鵬技術突破導熱芳綸紙](https://file.elecfans.com/web2/M00/3F/D6/poYBAGJqO-mASPG4AAAes7JY618194.jpg)
AMR叉車在桶車轉運領域的應用與前景分析
![AMR叉車在桶<b class='flag-5'>車</b>轉運<b class='flag-5'>領域</b>的應用與前景<b class='flag-5'>分析</b>](https://file1.elecfans.com/web2/M00/ED/E6/wKgaomZpY7SAZ5MrAA5o21oI-q4802.png)
量子計算+光伏!本源研究成果入選2023年度“中國地理科學十大研究進展”
![量子計算+光伏!本源<b class='flag-5'>研究</b>成果入選2023年度“中國地理科學十大<b class='flag-5'>研究進展</b>”](https://file.elecfans.com/web2/M00/3F/9D/poYBAGJo-maAOH8MAAIB_hk2Mno583.png)
綜述:高性能銻化物中紅外半導體激光器研究進展
![綜述:高性能銻化物中紅外半導體激光器<b class='flag-5'>研究進展</b>](https://file1.elecfans.com/web2/M00/C9/2F/wKgaomYaBaCAYWcWAABQ2qTGB2Q349.png)
先進封裝中銅-銅低溫鍵合技術研究進展
![先進封裝中銅-銅低溫鍵合技術<b class='flag-5'>研究進展</b>](https://file1.elecfans.com/web2/M00/CD/3F/wKgZomYg2_aAf_rHAABsBpE6T2w113.png)
評論