在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

神經(jīng)網(wǎng)絡(luò)運用領(lǐng)域

工程師 ? 來源:未知 ? 作者:姚遠香 ? 2018-11-24 09:28 ? 次閱讀

1.圖像和物體識別

機器在圖像和物體識別方面有很好的記錄。GeoffHinton發(fā)明的膠囊網(wǎng)絡(luò)幾乎減少了以前的最佳錯誤率,這個測試挑戰(zhàn)軟件識別玩具。即使視圖與之前分析的視圖不同,在各種掃描中使用增加量的這些膠囊也允許系統(tǒng)更好地識別物體。

另一個例子來自一個最先進的網(wǎng)絡(luò),該網(wǎng)絡(luò)經(jīng)過標記圖像數(shù)據(jù)庫的訓(xùn)練,能夠比相同任務(wù)訓(xùn)練100小時的博士更好地分類對象。

2.電子游戲

Google的DeepMind使用深度學(xué)習(xí)技術(shù),被稱為深度強化學(xué)習(xí)。研究人員用這種方法教計算機玩Atari游戲Breakout。電腦沒有以任何特定的方式教授或編程玩游戲。相反,它在觀看比分時被賦予了鍵盤的控制權(quán),其目標是最大化得分。玩了兩個小時后,電腦成了游戲的專家。

深度學(xué)習(xí)社區(qū)正在進行一場比賽,訓(xùn)練計算機在幾乎所有你能想到的游戲中擊敗人類,包括太空侵略者,毀滅戰(zhàn)士,乒乓球和魔獸世界。在大多數(shù)這些游戲中,深度學(xué)習(xí)網(wǎng)絡(luò)已經(jīng)勝過有經(jīng)驗的玩家。電腦沒有編程玩游戲;他們只是通過玩耍學(xué)習(xí)。

3.語音生成和識別

Google發(fā)布了WaveNet,百度發(fā)布了DeepSpeech。兩者都是自動生成語音的深度學(xué)習(xí)網(wǎng)絡(luò)。系統(tǒng)學(xué)會自己模仿人類的聲音,并隨著時間的推移而改善。將他們的言論與真實的人物區(qū)別開來,這要比想像中難得多。

由牛津大學(xué)和GoogleDeepMind科學(xué)家LipNet創(chuàng)建的一個深度網(wǎng)絡(luò),在閱讀人們的嘴唇方面達到了93%的成功,普通的人類嘴唇閱讀器只有52%的成功率。華盛頓大學(xué)的一個小組使用唇形同步來創(chuàng)建一個系統(tǒng),將合成音頻設(shè)置為現(xiàn)有視頻。

4.藝術(shù)和風(fēng)格的模仿

神經(jīng)網(wǎng)絡(luò)可以研究特定藝術(shù)品的筆畫,顏色和陰影中的圖案。在此基礎(chǔ)上,可以將原作的風(fēng)格轉(zhuǎn)化為新的形象。

DeepArt.io就是一個例子,該公司創(chuàng)建的應(yīng)用程序使用深度學(xué)習(xí)來學(xué)習(xí)數(shù)百種不同的風(fēng)格,可以將其應(yīng)用于照片。藝術(shù)家和程序員GeneKogan還根據(jù)從埃及象形文字中學(xué)到的算法樣式,應(yīng)用風(fēng)格轉(zhuǎn)換來修改蒙娜麗莎。

5.預(yù)測

斯坦福大學(xué)研究人員蒂姆尼特·格布魯拿走了五千萬張谷歌街景圖片,探索一個深度學(xué)習(xí)網(wǎng)絡(luò)可以做些什么。計算機學(xué)會了本地化和識別汽車。它檢測到超過2200萬輛汽車,包括他們的制造商,型號,車型和年份。這個系統(tǒng)應(yīng)用的一個例子包括了選民路線開始和停止的跡象。根據(jù)分析,“如果在15分鐘車程內(nèi)遇到的轎車數(shù)量超過皮卡車數(shù)量,那么在下次總統(tǒng)選舉期間,這個城市很可能會投票給民主黨人(88%的概率)。

來自GoogleSunroof的機器的另一個例子比人類提供更準確的預(yù)測。該技術(shù)使用來自GoogleEarth的航空照片創(chuàng)建屋頂?shù)?D模型,將其與周圍的樹木和陰影區(qū)分開來。然后使用太陽的軌跡來預(yù)測太陽能電池板根據(jù)位置規(guī)格可以從屋頂產(chǎn)生多少能量。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
收藏 人收藏

    評論

    相關(guān)推薦

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    在深度學(xué)習(xí)領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常見的模型。 1. 結(jié)構(gòu)差異 1.1 傳統(tǒng)
    的頭像 發(fā)表于 11-15 14:53 ?745次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)有何用途 卷積神經(jīng)網(wǎng)絡(luò)通常運用在哪里

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識別、視頻分析、自然語言處理、生物信息學(xué)等領(lǐng)域。本文將介紹卷積神經(jīng)網(wǎng)絡(luò)的用途
    的頭像 發(fā)表于 07-11 14:43 ?2718次閱讀

    BP神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是兩種在人工智能和機器學(xué)習(xí)領(lǐng)域
    的頭像 發(fā)表于 07-10 15:24 ?1738次閱讀

    BP神經(jīng)網(wǎng)絡(luò)和人工神經(jīng)網(wǎng)絡(luò)的區(qū)別

    BP神經(jīng)網(wǎng)絡(luò)和人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks,簡稱ANNs)之間的關(guān)系與區(qū)別,是神經(jīng)網(wǎng)絡(luò)領(lǐng)域中一個基礎(chǔ)且重要的話題。本文將從定義、結(jié)構(gòu)、算法、應(yīng)用及
    的頭像 發(fā)表于 07-10 15:20 ?1312次閱讀

    rnn是遞歸神經(jīng)網(wǎng)絡(luò)還是循環(huán)神經(jīng)網(wǎng)絡(luò)

    RNN(Recurrent Neural Network)是循環(huán)神經(jīng)網(wǎng)絡(luò),而非遞歸神經(jīng)網(wǎng)絡(luò)。循環(huán)神經(jīng)網(wǎng)絡(luò)是一種具有時間序列特性的神經(jīng)網(wǎng)絡(luò),能夠處理序列數(shù)據(jù),具有記憶功能。以下是關(guān)于循環(huán)
    的頭像 發(fā)表于 07-05 09:52 ?654次閱讀

    遞歸神經(jīng)網(wǎng)絡(luò)是循環(huán)神經(jīng)網(wǎng)絡(luò)

    遞歸神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,簡稱RNN)和循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,簡稱RNN)實際上是同一個概念,只是不同的翻譯方式
    的頭像 發(fā)表于 07-04 14:54 ?873次閱讀

    循環(huán)神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別

    循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,RNN)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是深度學(xué)習(xí)領(lǐng)域中兩種非常重要的神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-04 14:24 ?1506次閱讀

    深度神經(jīng)網(wǎng)絡(luò)與基本神經(jīng)網(wǎng)絡(luò)的區(qū)別

    在探討深度神經(jīng)網(wǎng)絡(luò)(Deep Neural Networks, DNNs)與基本神經(jīng)網(wǎng)絡(luò)(通常指傳統(tǒng)神經(jīng)網(wǎng)絡(luò)或前向神經(jīng)網(wǎng)絡(luò))的區(qū)別時,我們需要從多個維度進行深入分析。這些維度包括
    的頭像 發(fā)表于 07-04 13:20 ?1064次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)與循環(huán)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    在深度學(xué)習(xí)領(lǐng)域,卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks, CNN)和循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Networks, RNN)是兩種極其重要
    的頭像 發(fā)表于 07-03 16:12 ?3715次閱讀

    反向傳播神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

    神經(jīng)網(wǎng)絡(luò)在許多領(lǐng)域都有廣泛的應(yīng)用,如語音識別、圖像識別、自然語言處理等。然而,BP神經(jīng)網(wǎng)絡(luò)也存在一些問題,如容易陷入局部最優(yōu)解、訓(xùn)練時間長、對初始權(quán)重敏感等。為了解決這些問題,研究者們提出了一些改進的BP
    的頭像 發(fā)表于 07-03 11:00 ?870次閱讀

    bp神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)區(qū)別是什么

    BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是兩種不同類型的人工神經(jīng)網(wǎng)絡(luò),它們在
    的頭像 發(fā)表于 07-03 10:12 ?1360次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的原理是什么

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識別、語音識別、自然語言處理等領(lǐng)域。本文將詳細介紹卷積神經(jīng)網(wǎng)絡(luò)的原理,包括其
    的頭像 發(fā)表于 07-02 14:44 ?810次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

    化能力。隨著深度學(xué)習(xí)技術(shù)的不斷發(fā)展,神經(jīng)網(wǎng)絡(luò)已經(jīng)成為人工智能領(lǐng)域的重要技術(shù)之一。卷積神經(jīng)網(wǎng)絡(luò)和BP神經(jīng)
    的頭像 發(fā)表于 07-02 14:24 ?4721次閱讀

    神經(jīng)網(wǎng)絡(luò)模型的原理、類型及應(yīng)用領(lǐng)域

    數(shù)學(xué)建模神經(jīng)網(wǎng)絡(luò)模型是一種基于人工神經(jīng)網(wǎng)絡(luò)的數(shù)學(xué)建模方法,它通過模擬人腦神經(jīng)元的工作機制,實現(xiàn)對復(fù)雜問題的建模和求解。神經(jīng)網(wǎng)絡(luò)模型具有自學(xué)習(xí)能力、泛化能力強、適應(yīng)性強等優(yōu)點,因此在許多
    的頭像 發(fā)表于 07-02 11:31 ?1370次閱讀

    神經(jīng)網(wǎng)絡(luò)架構(gòu)有哪些

    神經(jīng)網(wǎng)絡(luò)架構(gòu)是機器學(xué)習(xí)領(lǐng)域中的核心組成部分,它們模仿了生物神經(jīng)網(wǎng)絡(luò)的運作方式,通過復(fù)雜的網(wǎng)絡(luò)結(jié)構(gòu)實現(xiàn)信息的處理、存儲和傳遞。隨著深度學(xué)習(xí)技術(shù)的不斷發(fā)展,各種
    的頭像 發(fā)表于 07-01 14:16 ?869次閱讀
    主站蜘蛛池模板: 国产午夜爽爽窝窝在线观看 | 多男一女一级淫片免费播放口 | 国产欧美一级片 | 在线免费观看一级片 | 色www永久免费视频 色y情视频免费看 | 黄色片免费看视频 | 午夜一级影院 | 他也色在线视频 | 69日本xxxxxxxxx56 69日本xxxxxxxxx78 | 五月婷婷综合色 | 色欲情狂| 日本不卡免费一区 | 黄色网视频 | 狠婷婷| 婷婷色九月 | 亚洲啪啪看看 | 九色愉拍自拍 | 狠狠干网址 | 恨恨操| 天堂avwww| 午夜资源| 一区二区三区在线免费 | 四虎影视网址 | 第四色男人天堂 | 欧美亚洲综合一区 | 日韩国产片 | 在线99热| 男人的天堂色偷偷 | 在线你懂得 | 日本aaaaa| 欧美精品xxxⅹ欧美 欧美精品高清在线xxxx | 欧美午夜大片 | 四虎永久精品免费观看 | 夜夜福利 | 福利你懂的 | 性欧美成人免费观看视 | 男人边吃奶边爱边做视频日韩 | 亚洲aⅴ久久久噜噜噜噜 | 亚洲天堂一区二区三区 | 精品国产免费久久久久久婷婷 | 欧美日a|