微流控芯片的發展
微全分析系統的概念是在1990年首欠由瑞士Ciba2Geigy公司的Manz與Widmer提出的,當時主要強調了分析系統的“微”與“全”,及微管道網絡的MEMS加工方法,而并未明確其外型特征。次年Manz等即在平板微芯片上實現了毛細管電泳與流動。微型全分析系統當前的發展前沿。微流控分析系統從以毛細管電泳分離為核心分析技術發展到液液萃取、過濾、無膜擴散等多種分離手段。其中多相層流分離微流控系統結構簡單,有多種分離功能,具有廣泛的應用前景。已有多篇文獻報道采用多相層流技術實現芯片上對試樣的無膜過濾、無膜參析和萃取分離。同時也有采用微加工有膜微滲析器完成質譜分析前試樣前處理操作的報道。流控分析系統從以電滲流為主要液流驅動手段發展到流體動力氣壓、重動、離心力、剪切力等多種手段。
直至今日,各國科學家在這一領域做出更加顯著地成績。微流控技術作為當前分析科學的重要發展前沿,在研究與應用方面都取得了飛速的發展。
微流控芯片的原理
微流控芯片采用類似半導體的微機電加工技術在芯片上構建微流路系統,將實驗與分析過程轉載到由彼此聯系的路徑和液相小室組成的芯片結構上,加載生物樣品和反應液后,采用微機械泵。電水力泵和電滲流等方法驅動芯片中緩沖液的流動,形成微流路,于芯片上進行一種或連續多種的反應。激光誘導熒光、電化學和化學等多種檢測系統以及與質譜等分析手段結合的很多檢測手段已經被用在微流控芯片中,對樣品進行快速、準確和高通量分析。微流控芯片的最大特點是在一個芯片上可以形成多功能集成體系和數目眾多的復合體系的微全分析系統?微型反應器是芯片實驗室中常用的用于生物化學反應的結構,如毛細管電泳、聚合酶鏈反應、酶反應和DNA 雜交反應的微型反應器等 。其中電壓驅動的毛細管電泳(Capillary Electrophoresis , CE) 比較容易在微流控芯片上實現,因而成為其中發展最快的技術。它是在芯片上蝕刻毛細管通道,在電滲流的作用下樣品液在通道中泳動,完成對樣品的檢測分析,如果在芯片上構建毛細管陣列,可在數分鐘內完成對數百種樣品的平行分析。自1992 年微流控芯片CE 首次報道以來,進展很快?首臺商品儀器是微流控芯片CE ( 生化分析儀,Aglient) ,可提供用于核酸及蛋白質分析的微流控芯片產品。
微流控芯片的特點
芯片集成的單元部件越來越多,且集成的規模也歸來越大,使著微流控芯片有著強大的集成性。同時可以大量平行處理樣品,具有高通量的特點,分析速度快、耗低,物耗少,污染小,分析樣品所需要的試劑量僅幾微升至幾十個微升,被分析的物質的體積甚至在納升級或皮升級。
廉價,安全,因此,微流控分析系統在微型化。集成化合便攜化方面的優勢為其在生物醫學研究、藥物合成篩選、環境監測與保護、衛生檢疫、司法鑒定、生物試劑的檢測等眾多領域的應用提供了極為廣闊的前景。
微流控芯片加工技術
一、光刻(lithography)和刻蝕技術(etching)
1.光刻工藝
光刻是用光刻膠、掩模和紫外光進行微制造 ,工藝如下 :
①仔細地將基片洗凈;
②在干凈的基片表面鍍上一層阻擋層 ,例如鉻、二氧化硅、氮化硅等;
③再用甩膠機在阻擋層上均勻地甩上一層幾百 A厚的光敏材料——光刻膠。光刻膠的實際厚度與它的粘度有關 ,并與甩膠機的旋轉速度的平方根成反比;
④在光掩模上制備所需的通道圖案。將光掩模覆蓋在基片上,用紫外光照射涂有光刻膠的基片,光刻膠發生光化學反應;
⑤用光刻膠配套顯影液通過顯影的化學方法除去經曝光的光刻膠。這樣,可用制版的方法將底片上的二維幾何圖形精確地復制到光刻膠層上;
⑥烘干后 ,利用未曝光的光刻膠的保護作用 ,采用化學腐蝕的方法在阻擋層上精確腐蝕出底片上平面二維圖形。
2.掩模制備
用光刻的方法加工微流控芯片時 ,必須首先制造光刻掩模。對掩模有如下要求:
①掩模的圖形區和非圖形區對光線的吸收或透射的反差要盡量大;
②掩模的缺陷如針孔、斷條、橋連、臟點和線條的凹凸等要盡量少;
③掩模的圖形精度要高。
通常用于大規模集成電路的光刻掩模材料有涂有光膠的鍍鉻玻璃板或石英板。用計算機制圖系統將掩模圖形轉化為數據文件,再通過專用接口電路控制圖形發生器中的爆光光源、可變光闌、工作臺和鏡頭,在掩模材料上刻出所需的圖形。但由于設備昂貴,國內一般科研單位需通過外協解決,延遲了研究周期。
由于微流控芯片的分辨率遠低于大規模集成電路的要求,近來有報道使用簡單的方法和設備制備掩模,用微機通過CAD軟件將設計微通道的結構圖轉化為圖象文件后,用高分辨率的打印機將圖象打印到透明薄膜上,此透明薄膜可作為光刻用的掩模,基本能滿足微流控分析芯片對掩模的要求。
評論