--- 產(chǎn)品詳情 ---
IOL (Max) (mA) | 64 |
IOH (Max) (mA) | -24 |
Technology Family | ABT |
Rating | Military |
Operating temperature range (C) | -55 to 125 |
| |
- Member of the Texas Instruments SCOPETM Family of Testability Products
- Member of the Texas Instruments WidebusTM Family
- Compatible With the IEEE Standard 1149.1-1990 (JTAG) Test Access Port and Boundary-Scan Architecture
- UBTTM (Universal Bus Transceiver) Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, or Clocked Mode
- Two Boundary-Scan Cells per I/O for Greater Flexibility
- State-of-the-Art EPIC-IIBTM BiCMOS Design Significantly Reduces Power Dissipation
- SCOPETM Instruction Set
- IEEE Standard 1149.1-1990 Required Instructions, Optional INTEST, CLAMP, and HIGHZ
- Parallel-Signature Analysis at Inputs With Masking Option
- Pseudo-Random Pattern Generation From Outputs
- Sample Inputs/Toggle Outputs
- Binary Count From Outputs
- Device Identification
- Even-Parity Opcodes
- Packaged in 68-Pin Ceramic Quad Flat Package Using 25-mil Center-to-Center Spacings
SCOPE, Widebus, UBT, and EPIC-IIB are trademarks of Texas Instruments Incorporated.
?
The SN54ABT18502 scan test device with 18-bit universal bus transceiver is a member of the Texas Instruments SCOPETM testability integrated circuit family. This family of devices supports IEEE Standard 1149.1-1990 boundary scan to facilitate testing of complex circuit-board assemblies. Scan access to the test circuitry is accomplished via the 4-wire test access port (TAP) interface.
In the normal mode, this device is an 18-bit universal bus transceiver that combines D-type latches and D-type flip-flops to allow data flow in transparent, latched, or clocked modes. It can be used either as two 9-bit transceivers or one 18-bit transceiver. The test circuitry can be activated by the TAP to take snapshot samples of the data appearing at the device pins or to perform a self test on the boundary-test cells. Activating the TAP in the normal mode does not affect the functional operation of the SCOPETM universal bus transceiver.
Data flow in each direction is controlled by output-enable ( and
), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A-bus data is latched while CLKAB is held at a static low or high logic level. Otherwise, if LEAB is low, A-bus data is stored on a low-to-high transition of CLKAB. When
is low, the B outputs are active. When
is high, the B outputs are in the high-impedance state. B-to-A data flow is similar to A-to-B data flow but uses the
, LEBA, and CLKBA inputs.
In the test mode, the normal operation of the SCOPETM universal bus transceivers is inhibited and the test circuitry is enabled to observe and control the I/O boundary of the device. When enabled, the test circuitry performs boundary-scan test operations according to the protocol described in IEEE Standard 1149.1-1990.
Four dedicated test pins observe and control the operation of the test circuitry: test data input (TDI), test data output (TDO), test mode select (TMS), and test clock (TCK). Additionally, the test circuitry performs other testing functions such as parallel-signature analysis (PSA) on data inputs and pseudo-random pattern generation (PRPG) from data outputs. All testing and scan operations are synchronized to the TAP interface.
Additional flexibility is provided in the test mode through the use of two boundary-scan cells (BSCs) for each I/O pin. This allows independent test data to be captured and forced at either bus (A or B). A PSA/COUNT instruction also is included to ease the testing of memories and other circuits where a binary count addressing scheme is useful.
The SN54ABT18502 is characterized for operation over the full military temperature range of -55°C to 125°C.
?
?
?
為你推薦
-
TI數(shù)字多路復用器和編碼器SN54HC1512022-12-23 15:12
-
TI數(shù)字多路復用器和編碼器SN54LS1532022-12-23 15:12
-
TI數(shù)字多路復用器和編碼器CD54HC1472022-12-23 15:12
-
TI數(shù)字多路復用器和編碼器CY74FCT2257T2022-12-23 15:12
-
TI數(shù)字多路復用器和編碼器SN74LVC257A2022-12-23 15:12
-
TI數(shù)字多路復用器和編碼器SN74LVC157A2022-12-23 15:12
-
TI數(shù)字多路復用器和編碼器SN74ALS258A2022-12-23 15:12
-
TI數(shù)字多路復用器和編碼器SN74ALS257A2022-12-23 15:12
-
TI數(shù)字多路復用器和編碼器SN74ALS157A2022-12-23 15:12
-
TI數(shù)字多路復用器和編碼器SN74AHCT1582022-12-23 15:12
-
【PCB設(shè)計必備】31條布線技巧2023-08-03 08:09
相信大家在做PCB設(shè)計時,都會發(fā)現(xiàn)布線這個環(huán)節(jié)必不可少,而且布線的合理性,也決定了PCB的美觀度和其生產(chǎn)成本的高低,同時還能體現(xiàn)出電路性能和散熱性能的好壞,以及是否可以讓器件的性能達到最優(yōu)等。在上篇內(nèi)容中,小編主要分享了PCB線寬線距的一些設(shè)計規(guī)則,那么本篇內(nèi)容,將針對PCB的布線方式,做個全面的總結(jié)給到大家,希望能夠?qū)︷B(yǎng)成良好的設(shè)計習慣有所幫助。1走線長度1433瀏覽量 -
電動汽車直流快充方案設(shè)計【含參考設(shè)計】2023-08-03 08:08
-
Buck電路的原理及器件選型指南2023-07-31 22:28
-
100W USB PD 3.0電源2023-07-31 22:27
-
千萬不要忽略PCB設(shè)計中線寬線距的重要性2023-07-31 22:27
想要做好PCB設(shè)計,除了整體的布線布局外,線寬線距的規(guī)則也非常重要,因為線寬線距決定著電路板的性能和穩(wěn)定性。所以本篇以RK3588為例,詳細為大家介紹一下PCB線寬線距的通用設(shè)計規(guī)則。要注意的是,布線之前須把軟件默認設(shè)置選項設(shè)置好,并打開DRC檢測開關(guān)。布線建議打開5mil格點,等長時可根據(jù)情況設(shè)置1mil格點。PCB布線線寬01布線首先應滿足工廠加工能力,1519瀏覽量 -
基于STM32的300W無刷直流電機驅(qū)動方案2023-07-06 10:02
-
上新啦!開發(fā)板僅需9.9元!2023-06-21 17:43
-
參考設(shè)計 | 2KW AC/DC數(shù)字電源方案2023-06-21 17:43
-
千萬不能小瞧的PCB半孔板2023-06-21 17:34