--- 產品詳情 ---
Display type | LCD unipolar |
IC integration | VCOM |
Vin (Min) (V) | 4.5 |
Vin (Max) (V) | 18 |
Source driver voltage (Min) (V) | 4.5 |
Source driver voltage (Max) (V) | 18 |
Level shifter/scan driver (ch) | 0 |
Features | Gamma buffer, I2C interface, VCOM or op amp |
Rating | Catalog |
- I2C Compatible Programmable DAC to Set the Output Current
- Ensured Monotonic DAC
- Non-Volatile Memory to Hold the Setting
- EEPROM in System Programmable
- No External Programming Voltage Required
- Maximum Interface Bus Speed is 400 kHz
- SON-10 Package
All trademarks are the property of their respective owners.
The LM8342 is an integrated combination of a non-volatile register (7 bits EEPROM) and a DAC controlled current source. Using the LM8342, the VCOM calibration procedure is simplified by elimination of the potentiometer adjustment task. This adjustment task is currently performed at the factory using a trimmer adjustment tool and visual inspection.
The VCOM adjustment can be done electronically in production, using the I2C compatible interface. The factory operator can physically view the screen head-on (frontal viewing) when performing this step, easing manufacturing especially for large TFT panels.
The VCOM level is typically at half AVDD (determined by R1 and R2) and is buffered by the actual VCOM driver. By controlling the level of IOUT, the VCOM level can be tuned. The current level at the output of the LM8342 is a fraction (1/128 to 128/128) of a maximum current which is set by RSET and an analog reference (AVDD). The actual fraction is determined by the 7-bit DAC. As a result, the output current of the LM8342 has a good temperature stability yielding a very stable VCOM adjustment. Controlling the DAC setting of the LM8342 is done via its I2C compatible interface. The actual DAC setting is stored in a volatile register. Using a “Write to EE” command the data can be stored permanently in the embedded EEPROM. At power on of the device, the EEPROM data is copied to the volatile register, setting the DAC. At any time, the data in the EEPROM can be changed again via the I2C compatible interface.
為你推薦
-
TI數字多路復用器和編碼器SN54HC1512022-12-23 15:12
-
TI數字多路復用器和編碼器SN54LS1532022-12-23 15:12
-
TI數字多路復用器和編碼器CD54HC1472022-12-23 15:12
-
TI數字多路復用器和編碼器CY74FCT2257T2022-12-23 15:12
-
TI數字多路復用器和編碼器SN74LVC257A2022-12-23 15:12
-
TI數字多路復用器和編碼器SN74LVC157A2022-12-23 15:12
-
TI數字多路復用器和編碼器SN74ALS258A2022-12-23 15:12
-
TI數字多路復用器和編碼器SN74ALS257A2022-12-23 15:12
-
TI數字多路復用器和編碼器SN74ALS157A2022-12-23 15:12
-
TI數字多路復用器和編碼器SN74AHCT1582022-12-23 15:12
-
電動汽車直流快充方案設計【含參考設計】2023-08-03 08:08
-
Buck電路的原理及器件選型指南2023-07-31 22:28
-
100W USB PD 3.0電源2023-07-31 22:27
-
基于STM32的300W無刷直流電機驅動方案2023-07-06 10:02
-
上新啦!開發板僅需9.9元!2023-06-21 17:43
-
參考設計 | 2KW AC/DC數字電源方案2023-06-21 17:43
-
千萬不能小瞧的PCB半孔板2023-06-21 17:34