資料介紹
概覽
自從傳送出第一筆無線電波之后,工程師就持續發明新方法,以優化電磁微波訊號。RF 訊號已廣泛用于多種應用,其中又以無線通信與 RADAR 的 2 項特殊應用正利用此常見技術。就本質而言,此 2 項應用的獨到之處,即是利用電磁波的空間維度 (Spatial dimension)。直到今天,許多無線通信系統整合了多重輸入/輸出 (MIMO) 天線架構,以利用多重路徑的訊號傳播 (Propagation) 功能。此外,目前有多款 RADAR 系統均使用電磁波束控制 (Beam steering),以取代傳統的機械控制傳輸訊號。這些應用均屬于多通道相位同調 (Phase coherent) RF 量測系統的主要行進動力之一。 就本質而言,此 2 項應用的獨到之處,即是利用電磁波的空間維度 (Spatial dimension)。直到今天,許多無線通信系統整合了多重輸入/輸出 (MIMO) 天線架構,以利用多重路徑的訊號傳播 (Propagation) 功能。此外,目前有多款 RADAR 系統均使用電磁波束控制 (Beam steering),以取代傳統的機械控制傳輸訊號。這些應用均屬于多通道相位同調 (Phase coherent) RF 量測系統的主要行進動力之一。
目錄
1、相位同調 RF 訊號產生
2、相位同調 RF 訊號擷取
3、數字降轉換的特性
介紹
PXI RF 儀器 (如 NI PXIe-5663 6.6 GHz RF 向量訊號分析器與 NI PXIe-5673 6.6 GHz RF 向量訊號產生器) 的模塊化架構使其可進行 MIMO 與波束賦形 (Beamforming) 應用所需的相位同調 (Phase coherent) RF 量測作業。圖 1 表示常見的量測系統,為 1 組 PXI-1075 - 18 槽式機箱中安裝 4 組同步化 RF 分析器,與 2 組同步化 RF 訊號產生器。
圖 1. 常見的 PXI 相位同調 RF 量測系統
此篇技術文件將說明設定相位同調 RF 產生或擷取系統時,其所需的技術。此外,亦將針對多組 RF 分析器之間的相位延遲,逐步呈現校準作業,以達最佳效能。
1. 相位同調 RF 訊號產生
若要設定任何相位同調 RF 系統,則必須同步化裝置的所有頻率訊號。透過 NI PXIe-5673 - 6.6 RF 向量訊號產生器,即可直接進行升轉換 (Upconversion),以將基頻 (Baseband) 波形編譯為 RF 訊號。圖 2 即說明雙信道 RF 向量訊號產生器的基本架構。請注意,在 2 個通道之間必須共享 2 組基頻取樣頻率與局部震蕩器。
圖 2. 同步化 2 個 RF 產生通道
在圖 2 中可發現 NI PXIe-5673 共包含 3 個模塊,分別為:PXI-5652 連續波合成器 (Synthesizer)、PXIe-5450 任意波形產生器,與 PXIe-5611 - RF 調變器。由于這些模塊可合并做為單信道的 RF 向量訊號產生器,因此亦可整合其他任意波形產生器 (AWG) 與 RF 升轉換器 (Upconverter),用于多信道的訊號產生應用。在圖 2 中,共有 1 組標準的 PXIe-5673 (由 3 個模塊所構成) 整合 1 組 NI PXIe-5673 MIMO 擴充組合。而擴充組合共容納了 1 組 AWG 與調變器,可建構第二個訊號產生信道。
2. 相位同調 RF 訊號擷取
除了 PXIe-5673 - RF 向量訊號產生器之外,PXIe-5663 - RF 向量訊號分析器亦可設定用于多通道應用。當設定多組 PXIe-5663 進行相位同調 RF 訊號擷取作業時,亦必須注意類似事項,以確實進行 LO 與基頻/中頻 (IF) 訊號的同步化。PXIe-5663 可利用訊號階段 (Signal stage) 并降轉換為 IF,亦可進行數字升轉換為基頻。與傳統的 3 階段式超外差 (Superheterodyne) 向量訊號分析器不同,此架構僅需于各個通道之間同步化單一局部震蕩器 (Local oscillator,LO),因此為設定相位同調應用最簡單的方法之一。若要同步化多組 PXI-5663 分析器,則必須于各組分析器之間分配共享的 IF 取樣頻率與 LO,以確保各個通道均是以相位同調的方式進行設定。圖 3 則為雙信道系統的范例。
圖 3. 同步化雙信道的 VSA 系統
在圖 3 中可看到 PXIe-5663 - RF 向量訊號分析器是由 PXI-5652 連續波合成器、PXIe-5601 - RF 降轉換器,與 PXIe-5622 - IF 示波器所構成。當向量訊號分析器整合 PXIe-5663 MIMO 擴充組合時,隨即新增了降轉換器與示波器,以建構雙信道的 RF 擷取系統。
若要了解多組 RF 向量訊號分析器的同步化方法,則必須先行深入了解 PXIe-5663 - RF 訊號分析器的詳細程序圖。在圖 4 中可看到,即便僅使用單一 LO 將 RF 降轉換為 IF,則各組分析器實際亦必須共享 3 組頻率。
圖 4. PXIe-5663 - RF 向量訊號分析器的詳細程序圖
如圖 4 所示,各個 RF 通道之間必須共享 LO、ADC 取樣頻率、數字降轉換器 (DDC),與數值控制震蕩器 (Numerically controlled oscillator,NCO)。如圖 4 所見,即便各組示波器之間共享 10 MHz 頻率,其實亦極為足夠。當各組示波器之間僅共享 10 MHz 參考時,即可產生非相關的信道對信道相位抖動 (Phase jitter);而于 IF 產生的相位噪聲強度,亦將由 RF 的 LO 相位噪聲所覆蓋。
3. 數字降轉換的特性
在了解相位同調 RF 擷取系統的精確校準方式之前,必須先了解應如何于基頻觀察 RF 的訊號特性。此處以相同中心頻率,且以回送 (Loopback) 模式設定的 VSG 與VSA 為例。如圖 5 所示,具備精確分析器中心頻率的降轉換 RF 訊號,將依基頻呈現為 DC 訊號。此外,由于基頻訊號屬于復雜波形,因此亦可將訊號的相位 (Θ) 分析而為時間函式。在圖 5 中可發現,只要 RF 向量訊號產生器與分析器互為同相 (In-phase),則「Phase vs. time」波形將呈現穩定的相位偏移 (Phase offset)。
圖 5. 了解基頻訊號頻率偏移所造成的影響
相對來說,只要 RF 音調 (Tone) 與分析器的中心頻率產生小幅誤差,隨即可造成極大的差異。當降轉換為基頻時,偏音 (Offset tone) 所產生的基頻 I (亦為 Q) 訊號即屬于正弦波。此外,基頻正弦波的頻率即等于「輸入音調與分析器中心頻率之間的頻率差異」。因此如圖 6 所示,「Phase versus time」圖將呈現線性關系。
圖 6. 未校準系統中的 10 MHz 音調「Phase vs. Time」關系圖
從圖 6 可發現,相位于每個微秒 (Microsecond) 可提升將近 360 – 亦即所產生的音調與分析器的中心頻率,可確實為 1 MHz 偏移。圖 6 中亦可發現,2 組同步取樣示波器之間保持著極小卻穩定的相位差 (Phase difference)。此離散相位差是起因于 LO 供電至各組降轉換器之間的連接線長度差異。如接下來所將看到的,只要針對其中 1 個 RF 通道調整 DDC 的開始相位 (Start phase),即可輕松進行校準。
如圖 7 所示,要量測 2 組分析器之間相位偏移的精確方式之一,即是以 2 組分析器的中心頻率產生單一音調。
圖 7. 雙通道 RF 分析器相位的校準測試設定
透過分配器 (Splitter) 與對應的連接線長度,即可量測各組分析器的「Phase versus time」。假設訊號產生器與分析器均集中為相同的 RF 頻率,則可發現各組分析器的「Phase versus time」圖甚為一致。圖 8 即呈現此狀態。
圖 8. 各組同步取樣的 ADC 均將具有相同的相位偏移
從圖 8 可明顯發現,共享相同 LO 與 IF 取樣頻率的 2 組分析器,將維持穩定的相位偏移。事實上,各組分析器之間的相位差 (圖 8 中的 ?Θ = 71.2°) 均可進行量測并補償之。若要補償各組分析器之間的相位差,則僅需于 DDC 中調整 NCO 的開始相位。若 NCO 所使用的 IF 中心頻率,即用于產生最后基頻 I 與 Q 訊號,則此 NCO 本質???為數字正弦波。在圖 8 中可發現,以菊鏈 (Daisy-chained) 方式連接的 RF 分析器,可透過特定中心頻率產生 71.2° 的載波相位差。在整合了第二組 LO 的連接線長度,與其所使用的中心頻率之后,即可決定確切的相位偏移。若將 71.2° 相位延遲 (Phase delay) 套用至主要 DDC 的 NCO 上,則可輕松調整 2 個信道的基頻訊號相位;如圖 9 所示。
圖 9. 校準過后的相位同調 RF 擷取通道「Phase vs. Time」
一旦校準各組分析器的 NCO 完畢,則 RF 分析器系統即可進行 2 個通道以上的相位同調 RF 擷取作業。事實上,多通道應用可同步化最多 4 組 PXIe-5663 - RF 向量訊號分析器。
結論
當 MIMO 與波束賦形技術正蓬勃發展時,亦對測試工程師帶來新的挑戰;而模塊化的 RF 儀控功能更可提供高成本效益且精確的量測解決方案。而進一步來說,如 PXIe-5663 VSA 與 PXIe-5673 的 PXI 儀器,則可設定為最多 4x4 MIMO 與相位同調 RF 量測的應用。
本文轉載自
轉載地址:
聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有,如涉及侵權,請聯系小編進行處理。
(mbbeetchina)
下載該資料的人也在下載
下載該資料的人還在閱讀
更多 >
- 用于計算特定相位截斷雜散的頻率和幅度的方法
- 時間服務器技術資料下載 9次下載
- EMI技術資料 77次下載
- 什么是相位噪聲?如何測試?資料下載
- 用于電池供電世界中的USB技術資料下載
- 藍牙低功耗技術資料下載
- AMOLED的幾種常規技術資料下載
- 物聯網的關鍵技術資料下載
- 淺談車載信息娛樂系統的無線音頻傳送技術資料下載
- 藍牙文件推送技術資料下載
- 實現5G基站和網絡的關鍵RF通信技術資料下載
- 多通道相位相干系統測試挑戰資料下載
- 測量較低時鐘頻率的相位噪聲和相位抖動資料下載
- 高壓定相器技術資料
- 如何設定相同net via on pin或BBvia on 0次下載
- 關于SAW與BAW RF濾波器 232次閱讀
- 在16通道演示器中驗證的經驗型多通道相位噪聲模型 487次閱讀
- 相位噪聲曲線有助于系統測試 1318次閱讀
- 解決雷達和通信系統中的相位噪聲挑戰 3400次閱讀
- TCP和UDP可以同時綁定相同的端口嗎? 1309次閱讀
- 改進的DAC相位噪聲測量支持超低相位噪聲DDS應用 2426次閱讀
- RF信號鏈的基本構建模塊 1640次閱讀
- 在16通道演示器中驗證的基于經驗的多通道相位噪聲模型 863次閱讀
- 什么是相位噪聲?造成相位噪聲的原因? 2.5w次閱讀
- 線性相位的特點及實現的條件是什么 1.8w次閱讀
- RF電路板提供精密相位和幅度數據解決方案 1732次閱讀
- RF合成器的相位校準和控制 4622次閱讀
- 分頻器的相位問題_音響中常見的相位問題及解決方法 3.9w次閱讀
- 低頻和高頻RF無線系統的集成差異 4088次閱讀
- 基于AD8302的單片寬頻帶相位差測量系統設計 7808次閱讀
下載排行
本周
- 1電子電路原理第七版PDF電子教材免費下載
- 0.00 MB | 1489次下載 | 免費
- 2單片機典型實例介紹
- 18.19 MB | 91次下載 | 1 積分
- 3S7-200PLC編程實例詳細資料
- 1.17 MB | 27次下載 | 1 積分
- 4筆記本電腦主板的元件識別和講解說明
- 4.28 MB | 18次下載 | 4 積分
- 5開關電源原理及各功能電路詳解
- 0.38 MB | 9次下載 | 免費
- 6基于AT89C2051/4051單片機編程器的實驗
- 0.11 MB | 4次下載 | 免費
- 7基于單片機和 SG3525的程控開關電源設計
- 0.23 MB | 3次下載 | 免費
- 8基于單片機的紅外風扇遙控
- 0.23 MB | 3次下載 | 免費
本月
- 1OrCAD10.5下載OrCAD10.5中文版軟件
- 0.00 MB | 234313次下載 | 免費
- 2PADS 9.0 2009最新版 -下載
- 0.00 MB | 66304次下載 | 免費
- 3protel99下載protel99軟件下載(中文版)
- 0.00 MB | 51209次下載 | 免費
- 4LabView 8.0 專業版下載 (3CD完整版)
- 0.00 MB | 51043次下載 | 免費
- 5555集成電路應用800例(新編版)
- 0.00 MB | 33562次下載 | 免費
- 6接口電路圖大全
- 未知 | 30319次下載 | 免費
- 7Multisim 10下載Multisim 10 中文版
- 0.00 MB | 28588次下載 | 免費
- 8開關電源設計實例指南
- 未知 | 21539次下載 | 免費
總榜
- 1matlab軟件下載入口
- 未知 | 935053次下載 | 免費
- 2protel99se軟件下載(可英文版轉中文版)
- 78.1 MB | 537791次下載 | 免費
- 3MATLAB 7.1 下載 (含軟件介紹)
- 未知 | 420026次下載 | 免費
- 4OrCAD10.5下載OrCAD10.5中文版軟件
- 0.00 MB | 234313次下載 | 免費
- 5Altium DXP2002下載入口
- 未知 | 233045次下載 | 免費
- 6電路仿真軟件multisim 10.0免費下載
- 340992 | 191183次下載 | 免費
- 7十天學會AVR單片機與C語言視頻教程 下載
- 158M | 183277次下載 | 免費
- 8proe5.0野火版下載(中文版免費下載)
- 未知 | 138039次下載 | 免費
評論