九、測判三極管的口訣
三極管的管型及管腳的判別是電子技術初學者的一項基本功,為了幫助讀者迅速掌握測判方法,筆者總結出四句口訣:“三顛倒,找基極;PN結,定管型;順箭頭,偏轉大;測不準,動嘴巴。”下面讓我們逐句進行解釋吧。
9.1 三顛倒,找基極
大家知道,三極管是含有兩個PN結的半導體器件。根據兩個PN結連接方式不同,可以分為NPN型和PNP型兩種不同導電類型的三極管。
測試三極管要使用萬用電表的歐姆擋,并選擇R×100或R×1k擋位。對于指針式萬用電表有,其紅表筆所連接的是表內電池的負極,黑表筆則連接著表內電池的正極。假定我們并不知道被測三極管是NPN型還是PNP型,也分不清各管腳是什么電極。測試的 第一步是判斷哪個管腳是基極。這時,我們任取兩個電極(如這兩個電極為1、2),用萬用電表兩支表筆顛倒測量它的正、反向電阻,觀察表針的偏轉角度;接著,再取1、3兩個電極和 2、3兩個電極,分別顛倒測量它們的正、反向電阻,觀察表針的偏轉角度。在這三次顛倒測
量中,必然有兩次測量結果相近:即顛倒測量中表針一次偏轉大,一次偏轉小;剩下一次必 然是顛倒測量前后指針偏轉角度都很小,這一次未測的那只管腳就是我們要尋找的基極。
9.2 PN結,定管型
找出三極管的基極后,我們就可以根據基極與另外兩個電極之間PN結的方向來確定管子的導電類型。將萬用表的黑表筆接觸基極,紅表筆接觸另外兩個電極中的任一電極,若表頭指針偏轉角度很大,則說明被測三極管為NPN型管;若表頭指針偏轉角度很小,則被測管即為PNP型。
9.3 順箭頭,偏轉大
找出了基極b,另外兩個電極哪個是集電極c,哪個是發射極e呢?這時我們可以用測穿透電流ICEO的方法確定集電極c和發射極e。
(1)對于NPN型三極管,由NPN型三極管穿透電流的流向原理,用萬用電表的黑、紅表筆顛倒測量兩極間的正、反向電阻Rce和Rec,雖然兩次測量中萬用表指針偏轉角度都很小,但仔細觀察,總會有一次偏轉角度稍大,此時電流的流向一定是:黑表筆→c極→b極→e極→紅表筆,電流流向正好與三極管符號中的箭頭方向一致,所以此時黑表筆所接的一定是集電極c,紅表筆所接的一定是發射極e。
(2)對于PNP型的三極管,道理也類似于NPN型,其電流流向一定是:黑表筆→e極→b極
→c極→紅表筆,其電流流向也與三極管符號中的箭頭方向一致,所以此時黑表筆所接的一 定是發射極e,紅表筆所接的一定是集電極c。
9.4 測不出,動嘴巴
若在“順箭頭,偏轉大”的測量過程中,若由于顛倒前后的兩次測量指針偏轉均太小難以區分時,就要“動嘴巴”了。具體方法是:在“順箭頭,偏轉大”的兩次測量中,用兩只手分別捏住兩表筆與管腳的結合部,用嘴巴含住(或用舌頭抵住)基電極b,仍用“順箭頭,偏轉大”的判別方法即可區分開集電極c與發射極e。其中人體起到直流偏置電阻的作用,目的是使效果更加明顯。
四、電感器、變壓器檢測
4.1 色碼電感器的的檢測:
將萬用表置于R×1擋,紅、黑表筆各接色碼電感器的任一引出端,此時指針應向右擺動。根據測出的電阻值大小,可具體分下述三種情況進行鑒別:
1.被測色碼電感器電阻值為零,其內部有短路性故障。
2.被測色碼電感器直流電阻值的大小與繞制電感器線圈所用的漆包線徑、繞制圈數有直接關系,只要能測出電阻值,則可認為被測色碼電感器是正常的。
4.2 中周變壓器的檢測
1.將萬用表撥至R×1擋,按照中周變壓器的各繞組引腳排列規律,逐一檢查各繞組的通斷情況,進而判斷其是否正常。
2.檢測絕緣性能 將萬用表置于R×10k擋,做如下幾種狀態測試:
(1)初級繞組與次級繞組之間的電阻值;
(2)初級繞組與外殼之間的電阻值;
(3)次級繞組與外殼之間的電阻值。
上述測試結果分出現三種情況:
(1)阻值為無窮大:正常;
(2)阻值為零:有短路性故障;
(3)阻值小于無窮大,但大于零:有漏電性故障。
4.3 電源變壓器的檢測
1.通過觀察變壓器的外貌來檢查其是否有明顯異常現象。如線圈引線是否斷裂,脫焊,絕緣材料是否有燒焦痕跡,鐵心緊固螺桿是否有松動,硅鋼片有無銹蝕,繞組線圈是否有外露等。
2.絕緣性測試。用萬用表R×10k擋分別測量鐵心與初級,初級與各次級、鐵心與各次級、靜電屏蔽層與衩次級、次級各繞組間的電阻值,萬用表指針均應指在無窮大位置不動。否則,說明變壓器絕緣性能不良。
3.線圈通斷的檢測。將萬用表置于R×1擋,測試中,若某個繞組的電阻值為無窮大,則說明此繞組有斷路性故障。
4.判別初、次級線圈。電源變壓器初級引腳和次級引腳一般都是分別從兩側引出的,并且初級繞組多標有220V字樣,次級繞組則標出額定電壓值,如15V、24V、35V等。再根據這些標記進行識別。
5.空載電流的檢測。
(a) 直接測量法。將次級所有繞組全部開路,把萬用表置于交流電流擋500mA,串入初級繞組。當初級繞組的插頭插入220V交流市電時,萬用表所指示的便是空載電流值。此值不應大于變壓器滿載電流的10%~20%。一般常見電子設備電源變壓器的正常空載電流應在100mA左右。如果超出太多,則說明變壓器有短路性故障。
(b) 間接測量法。在變壓器的初級繞組中串聯一個10 /5W的電阻,次級仍全部空載。把萬用表撥至交流電壓擋。加電后,用兩表筆測出電阻R兩端的電壓降U,然后用歐姆定律算出空載電流I空,即I空=U/R。F 空載電壓的檢測。將電源變壓器的初級接220V市電,用萬用表交流電壓接依次測出各繞組的空載電壓值(U21、U22、U23、U24)應符合要求值,允許誤差范圍一般為:高壓繞組≤±10%,低壓繞組≤±5%,帶中心抽頭的兩組對稱繞組的電壓差應≤±2%。G 一般小功率電源變壓器允許溫升為40℃~50℃,如果所用絕緣材料質量較好,允許溫升還可提高。
6.檢測判別各繞組的同名端。在使用電源變壓器時,有時為了得到所需的次級電壓,可將兩個或多個次級繞組串聯起來使用。采用串聯法使用電源變壓器時,參加串聯的各繞組的同名端必須正確連接,不能搞錯。否則,變壓器不能正常工作。I.電源變壓器短路性故障的綜合檢測判別。電源變壓器發生短路性故障后的主要癥狀是發熱嚴重和次級繞組輸出電壓失常。通常,線圈內部匝間短路點越多,短路電流就越大,而變壓器發熱就越嚴重。檢測判斷電源變壓器是否有短路性故障的簡單方法是測量空載電流(測試方法前面已經介紹)。存在短路故障的變壓器,其空載電流值將遠大于滿載電流的10%。當短路嚴重時,變壓器在空載加電后幾十秒鐘之內便會迅速發熱,用手觸摸鐵心會有燙手的感覺。此時不用測量空載電流便可斷定變壓器有短路點存在。
五、NTC熱敏電阻檢測方法
(一)測量標稱電阻值Rt
用萬用表測量NTC熱敏電阻的方法與測量普通固定電阻的方法相同,即按NTC熱敏電阻的標稱阻值選擇合適的電阻擋可直接測出Rt的實際值。但因NTC熱敏電阻對溫度很敏感,故測試時應注意以下幾點:
(1)由標稱阻值Rt的定義可知,此值是生產廠家在環境溫度為25℃時所測得的。所以用萬用表測量Rt時,亦應在環境溫度接近25℃時進行,以保證測試的可信度。
(2)測量功率不得超過規定值,以免電流熱效應引起測量誤差。例如,MF12-1型NTC熱敏電阻,其額定功率為1W,測量功率P1=0.2mW。假定標稱電阻值Rt為1kΩ,則測試電流:
顯然使用R×lk擋比較合適,該擋滿度電流Im通常為幾十至一百幾十微安。例如多用的500型萬用表R×1k擋的Im=150uA,與141uA很接近。
(3)注意正確操作。測試時,不要用于捏住熱敏電阻體,以防止人體溫度對測試產生影響。
(二)估測溫度系數αt
先在室溫t1下測得電阻值Rt1;再用電烙鐵作熱源,靠近熱敏電阻Rt1,測出電阻值Rt2,同時用溫度計測出此時熱敏電阻RT表面的平均溫度t2。將所測得的結果輸入下式:
αt≈(Rt2-Rt1)/[Rt1(t2-t1)]
NTC熱敏電阻的αt<0。
注意事項:
1、給熱敏電阻加熱時,宜用20W左右的小功率電烙鐵,且烙鐵頭不要直接去接觸熱敏電阻或靠的太近,以防損壞熱敏電阻。
2、若測得的αt>0,則表明該熱敏電阻不是NTC而是FTC。
六、常用二極管的檢測
6.1 萬用表檢測普通二極管的極性與好壞
檢測原理:根據二極管的單向導電性這一特點性能良好的二極管,其正向電阻小,反向電阻大;這兩個數值相差越大越好。若相差不多說明二極管的性能不好或已經損壞。
測量時,選用萬用表的“歐姆”擋。一般用R x100或R xlk擋,而不用Rx1或R x10k擋。因為Rxl擋的電流太大,容易燒壞二極管,R xlok擋的內電源電壓太大,易擊穿二極管。測量方法:將兩表棒分別接在二極管的兩個電極上,讀出測量的阻值;然后將表棒對換再測量一次,記下第二次阻值。若兩次阻值相差很大,說明該二極管性能良好;并根據測量電阻小的那次的表棒接法(稱之為正向連接),判斷出與黑表棒連接的是二極管的正極,與紅表棒連接的是二極管的負極。因為萬用表的內電源的正極與萬用表的“-”插孔連通,內電源的負極與萬用表的“+”插孔連通。
如果兩次測量的阻值都很小,說明二極管已經擊穿;如果兩次測量的阻值都很大,說明二極管內部已經斷路:兩次測量的阻值相差不大,說明二極管性能欠佳。在這些情況下,二極管就不能使用了。
必須指出:由于二極管的伏安特性是非線性的,用萬用表的不同電阻擋測量二極管的電阻時,會得出不同的電阻值;實際使用時,流過二極管的電流會較大,因而二極管呈現的電阻值會更小些。