目前,為了確保數碼設備使用的低電壓及高速運轉的半導體電源線的穩定性,需要控制由紋波電壓及負載變動引起的電壓變動。作為平滑用電容器,必須要達到100μF以上容量及低阻抗,此前市場的解決方案主要是使用導電性聚合物電解電容器。村田這次擴充了100μF以上的多層陶瓷電容器產品陣容,可以取代導電性聚合物電解電容器。
雖然多層陶瓷電容器的容量比導電性聚合物電解電容器要低,但仍然具有很強的可替代性。這是因為多層陶瓷電容器的阻抗及ESR很低,應對電壓變化反應良好。圖5是代表性的導電性聚合物鉭電解電容器和多層陶瓷電容器的阻抗,ESR-頻率特性。數碼設備使用的電源IC開關頻率在100kHz以上,從圖中可以看出,相對于導電性聚合物鉭電解電容器,多層陶瓷點容易不僅和它具有相同容量,而且容量比它低的產品,阻抗和ESR也很低。
此外,在諧振頻率為高頻時,與導電性聚合物鉭電解電容器相比,多層陶瓷電容器的阻抗非常低,對高頻靜噪非常有用。
圖5.阻抗/ESR-頻率特性比較
村田使用PC上DDR用電源IC的評估基板進行了替換評估,評估電路及評估結果如圖6所示。評估基板使用1.4V直流電壓,初始狀態下在2處使導電性聚合物鉭電解電容器(7.3x4.3mm尺寸/2.0V/330μF/M偏差)作為平滑用電容器。然后,使用150μF及200μF(3.2x1.6mm尺寸/6.3V/M偏差)的多層陶瓷電容器替換導電性聚合物鉭電解電容器,對紋波電壓/尖峰電壓、負載變化時的電壓變化進行評估。本次評估已事先調整相位,確保了評估基板的穩定性。
圖6.導電性聚合物鉭電解電容器替換評估結果
從圖中可以看出,使用多層陶瓷電容器時,雖然其標稱容量值比導電性聚合物鉭電解電容器低,但的確能改善紋波電壓。這是因為開關頻率處的多層陶瓷電容器阻抗及ESR很低,控制了由開關頻率產生的電壓變動,改善了紋波電壓。此外,對于尖峰電壓同樣有改善作用。這是由于多層陶瓷電容器的ESL很低,控制了高頻噪聲,改善了尖峰電壓。
但是,在電流變化很大的負載變動測試中,使用150μF多層陶瓷電容器時,電壓變動結果并不理想。這與負載變動測試對電容器施加電壓時的有效容量有關。測試所用的多層陶瓷電容器的標稱容量值比導電性聚合物鉭電解電容器低,DC偏壓特性導致有效容量值更低,因此測試結果不理想。但是,用了容量較大的220μF產品,就能改善負載變動測試的評估結果。
由于低電壓驅動的半導體十分普及,作為提供直流電源的電源IC的平滑用電容器,一般會使用具備大容量、低ESR特性的導電性聚合物電解電容器,但隨著使用此類產品的服務器等設備對小型化、長期可靠性等性能越發重視,對平滑用電容器也產生了同樣的要求。村田十分看重具備小型化、高可靠性,且有更低阻抗/低ESR/低ESL特性的100μF以上的多層陶瓷電容器的發展。如今市場交易很活躍,相信村田今后產品陣容的擴大將有助于電子設備市場的發展。