有關(guān)類似照明用LED模塊的散熱特性,單靠封裝基板往往無法滿足實(shí)際需求,因此基板周邊材料的配合變得非常重要,例如圖11的端緣發(fā)光型LED背光模塊的新結(jié)構(gòu),配合~3W/m?K的熱傳導(dǎo)性膜片,可以有效提高LED模塊的散熱性與LED模塊的組裝作業(yè)性。
陶瓷系封裝基板
如上所述白光LED的發(fā)熱隨著投入電力強(qiáng)度的增加持續(xù)上升,LED芯片的溫升會造成光輸出降低,因此LED的封裝結(jié)構(gòu)與使用材料的檢討非常重要。
以往LED使用低熱傳導(dǎo)率樹脂封裝,被視為是影響散熱特性的原因之一,因此最近幾年逐漸改用高熱傳導(dǎo)陶瓷,或是設(shè)有金屬板的樹脂封裝結(jié)構(gòu)。LED芯片高功率化常用手法分別是:
●LED芯片大型化
●改善LED芯片的發(fā)光效率
●采用高取光效率的封裝
●大電流化
雖然提高電流發(fā)光量會呈比例增加,不過LED芯片的發(fā)熱量也會隨著上升。圖12是LED投入電流與放射照度量測結(jié)果,由圖可知在高輸入領(lǐng)域放射照度呈現(xiàn)飽和與衰減現(xiàn)象,這種現(xiàn)象主要是LED芯片發(fā)熱所造成,因此LED芯片高功率化時首先必需解決散熱問題。
LED的封裝除了保護(hù)內(nèi)部LED芯片之外,還兼具LED芯片與外部作電氣連接、散熱等功能。
LED的封裝要求LED芯片產(chǎn)生的光線可以高效率取至外部,因此封裝必需具備高強(qiáng)度、高絕緣性、高熱傳導(dǎo)性與高反射性,令人感到意外的是陶瓷幾乎網(wǎng)羅上述所有特性。
表2是陶瓷的主要材料物性一覽,除此之外陶瓷耐熱性與耐光線劣化性也比樹脂優(yōu)秀。
?
傳統(tǒng)高散熱封裝是將LED芯片設(shè)置在金屬基板上周圍再包覆樹脂,然而這種封裝方式的金屬熱膨脹系數(shù)與LED芯片差異非常大,當(dāng)溫度變化非常大或是封裝作業(yè)不當(dāng)時極易產(chǎn)生熱歪斜(thermal strain;熱剪應(yīng)力),進(jìn)而引發(fā)芯片瑕疵或是發(fā)光效率降低。
未來LED芯片面臨大型化發(fā)展時,熱歪斜問題勢必變成無法忽視的困擾,有關(guān)這點(diǎn)具備接近LED芯片的熱膨脹系數(shù)的陶瓷,可說是熱歪斜對策非常有利的材料。
圖13是高功率LED陶瓷封裝的外觀;圖14是高功率LED陶瓷封裝的基本結(jié)構(gòu),圖14(b)的反射罩電鍍銀膜。它可以提高光照射率,圖14(c)的陶瓷反射罩則與陶瓷基板呈一體結(jié)構(gòu)。
?
?
散熱設(shè)計(jì)
圖15表示LED內(nèi)部理想性熱流擴(kuò)散模式,圖15右圖的實(shí)線表示封裝內(nèi)部P~Q之間高熱流擴(kuò)散分布非常平坦,由于熱流擴(kuò)散至封裝整體均勻流至封裝基板,其結(jié)果使得LED芯片正下方的溫度大幅降低。
?
圖16是以封裝材的熱傳導(dǎo)率表示熱擴(kuò)散性的差異,亦即圖15表示正常狀態(tài)時的溫度分布,與單位面積單位時間流動的熱流束分布特性。
使用高熱傳導(dǎo)材時,封裝內(nèi)部的溫差會變小,此時熱流不會呈局部性集中,LED芯片整體產(chǎn)生的熱流呈放射狀流至封裝內(nèi)部各角落,換言之高熱傳導(dǎo)材料可以提高LED封裝內(nèi)部的熱擴(kuò)散性。