配有計算公式的單端至 50? 輸入差分放大器實例。采用 AC 耦合時阻抗匹配是僅有的問題。另外,AC 耦合還可實現自動的輸入至輸出共模電平移位。
2013-11-05 09:51:20
1544 ![](https://file1.elecfans.com//web2/M00/A6/68/wKgZomUMPYWABxp4AAAO49zz4Ow526.jpg)
經典的四電阻差分放大器可以解決許多測量難題。但是,總有一些應用需要的靈活性比這些放大器所能提供的更高。由于在差分放大器中電阻匹配直接影響到增益誤差和共模抑制比(CMRR),所以將這些電阻集成到同一個
2020-01-07 10:18:04
1686 ![](https://file.elecfans.com/web1/M00/B2/E7/pIYBAF4T61iAC9GyAADOGTRAG_A816.png)
(模數轉換器)緩沖和瞬態應用提供了超高動態范圍放大器。極低的直流誤差在光學應用中具有很好的精度。高單位增益穩定帶寬和JFET輸入允許在高速低噪聲積分器中的卓越性能。高輸入阻抗和低偏置電流由FET輸入由超低
2020-10-26 16:41:33
在各種應用領域,采用模擬技術時都需要使用差分放大器電路。例如測量技術,根據其應用的不同,可能需要極高的測量精度。為了達到這一精度,盡可能減少典型誤差源(例如失調和增益誤差,以及噪聲、容差和漂移
2019-08-08 07:51:16
單片差分放大器是集成電路,包含一個運算放大器(運放)以及不少于四個采用相同封裝的精密電阻器。對需要將差分信號轉換成單端信號同時抑制共模信號的模擬設計人員而言,它們是非常有用的構建塊。例如,圖1所示
2018-09-07 11:04:39
采用高級壓控增益器件程控放大器設計本設計由三個模塊電路構成:前級放大電路(帶AGC部分)、后級放大電路和單片機顯示與控制模塊。在前級放大電路中,用寬帶運算放大器AD603兩級級聯放大輸入信號,輸出
2009-12-17 10:09:52
的功率傳輸.反之,當電路阻抗失配時,不但得不到最大的功率傳輸,還可能對電路產生損害.阻抗匹配常見于各級放大電路之間、放大器與負載之間、測量儀器與被測電路之間、天線與接收機或發信機與天線之間,等等.例如
2016-07-29 13:56:25
的輸入阻抗大于前一級的輸出阻抗5-10倍以上,就可認為阻抗匹配良好;對于放大器連接音箱來說,電子管機應選用與其輸出端標稱阻抗相等或接近的音箱,而晶體管放大器則無此限制,可以接任何阻抗的音箱。輸入端
2017-06-01 09:08:23
約的數字,一般規定同軸電纜基帶50歐姆,頻帶75歐姆,對絞線則為 100歐姆,只是取個整而已,為了匹配方便。何為阻抗阻抗是電阻與電抗在向量上的和。高頻電路的阻抗匹配由于高頻功率放大器工作于非線性狀態,所以
2014-12-01 10:37:44
13000v/μs;斷電能力?! 谩 〔罘諥DC驅動器;單端到差分轉換;中頻采樣接收機;射頻/中頻增益塊;聲表面波濾波器接口。 一般說明 AD8351是一種低成本差分放大器,可用于射頻和中頻應用,頻率
2020-07-20 17:08:14
優化,增益≥2。這個多功能放大器具有非承諾性高輸入阻抗(+)和(–)輸入,可用于差分或單端配置。另外,第二套提供增益調節和直流控制差分放大器。LT1187的高轉換率,165V/μs,寬帶寬,50MHz
2020-07-10 14:14:40
級執行。高阻抗輸入允許V1和V2源端接或阻抗匹配,無需差分放大器進一步加載。如果V1和V2輸入已經是真正的差分輸入,例如信號變壓器的輸出,則可以在它們之間使用一個匹配的終端電阻。但是,請記住,對于V1
2020-10-19 15:44:32
輸出阻抗匹配電阻器(在本例中為68.1?)進行組合。當一個通道被禁用時,它的反饋網絡形成了輸出阻抗的一部分,并在輸出到電纜上時輕微地衰減信號。匹配電阻已設置為在負載處獲得+1的信號增益,同時在負載處
2020-11-23 16:34:04
反向和非反向輸入以及單路輸出的典型差分放大器。圖 2:典型電流檢測放大器的簡化示意圖。增益由電阻器 R2 對 R1 和 R4 對 R3 的比值設置。(圖片來源:Digi-Key Electronics
2018-11-27 11:40:14
NF 和 OIP3 性能以實現合理的阻抗匹配。LTC6431-15 和 LTC6430-15 放大器在 20MHz 至 1700MHz 頻帶范圍內,在內部匹配了輸入和輸出阻抗,從而簡化了設計,同時
2018-10-18 16:03:48
為什么高頻小信號諧振放大器中要考慮阻抗匹配?如何實現阻抗匹配?常用有哪些連接方式?
2023-03-16 10:29:08
在本文中,我們將討論為什么離散實現不能提供高精度的電阻式電流傳感一個離散的放大器連同一些外部增益設置電阻可以用來通過電流檢測電阻器獲得電壓。雖然這種離散的解決方案可以具有成本效益,但由于外部組件
2022-06-11 10:47:31
信號或廣泛電能在傳輸過程中,為實現信號的無反射傳輸或最大功率傳輸,要求電路連接實現阻抗匹配。阻抗匹配關系著系統的整體性能,實現匹配可使系統性能達到最優。阻抗匹配的概念應用范圍廣泛,阻抗匹配常見于各級
2019-08-20 07:23:39
極大的優勢。差分放大器使用的內部電阻器相互匹配、采用激光微調和溫度跟蹤處理,能夠實現卓越的共模抑制功能——比常用的分離式組件性能更好。圖1所示的三運放電路是優化信號路徑的簡圖,能夠實現分立式運放和電阻器難以企及的直流精度、低噪聲和動態性能。
2017-04-01 14:40:53
電流也應很低,典型值為 1 nA至 50 nA。與運算放大器一樣,其輸出阻抗很低,在低頻段通常僅有幾毫歐(mΩ)。運算放大器的閉環增益是由其反向輸入端和輸出端之間連接的外部電阻決定。與放大器
2011-11-18 22:02:54
,從而可將輸入級失調變化平均降至輸出級的大約十分之一。儀表放大器的 CMRR 與 PSRR 參數不會如魔法般地隨增益提高而改善,事實上它是多級拓撲與差分放大器輸出級的結果。輸入放大器的精確匹配與輸出級電阻器的正確布局有助于現代 IC 儀表放大器為電子工程師提供我們已習以為常的巨大抑制功能。
2018-09-19 10:53:42
測量。但是,低固定增益差分放大器的噪聲測量面臨著更大的問題,它集成反饋和增益電阻,不方便 使用高增益配置。此外,為了與頻譜分析儀接口,需要進行差分單端轉換。第二級放大器可以提供增益并執行差分單端轉換
2017-04-10 13:14:58
您會為了匹配您運算放大器電路的輸入DC電阻而添加一個電阻器嗎?
2021-04-06 06:43:21
特點內部增益設定電阻器可通過引腳配置而成為差分放大器、反相放大器和同相放大器差分放大器:增益范圍 1 至 7CMRR > 65dB同相放大器:增益范圍 1至 8反相放大器增益范圍 -1 至
2012-06-01 17:41:15
電源范圍:±2.5V至±16V●關閉以節省電力應用●音頻ADC驅動程序●平衡線路驅動器●平衡接收機●有源濾波器●前置放大器說明OPA1632是一款全差分放大器,用于驅動高性能音頻模數轉換器(adc)。它
2020-09-21 17:52:27
全差分放大器 (FDA):即指輸入和輸出都是差分信號的運放,其優點為能提供更低的噪聲,較大的輸出電壓擺幅和共模抑制比,可較好地抑制諧波失真的偶數階項等。在使用中,單端信號輸入差分信號輸出。
2019-06-03 06:41:30
迭代才可以達到理想的匹配以及增益。首先根據應用初步確定增益電阻RG以及分饋電阻RF,并且RF1=RF2,RG1=RG2以保持差分放大的平衡。根據圖中式子求出輸入端等效阻抗值RIN。為了匹配信號源阻抗RS
2019-05-31 06:11:55
的強度將在下面進行說明。光激活差分放大器此處,上面的電路用作光控開關,當LDR電阻器檢測到的光強度超過或低于某個預設值時,該開關會將輸出繼電器“接通”或“關斷”。固定參考電壓通過R1-R2分壓器網絡施加
2020-12-30 09:18:53
反射。在低頻段,放大器之間的級聯一般是不用考慮級間匹配嗎?也就是放大器輸入端不用接50歐姆到地,以及輸出端不用串聯一個50歐姆電阻到下一級。放大器之間直接級聯,因為用一般放大器放大,輸入阻抗都很
2015-08-03 20:26:24
調整電阻,可配置用于實現具有不同增益的各種高性能放大器。所有精密電阻都是片內集成電阻,因此具有出色的電阻匹配和溫度跟蹤特性。AD8270采用5V至36V單電源供電或±2.5V至±18V雙電源供電,每個
2019-07-05 07:09:03
問:可以增加固定增益差分放大器的增益嗎?答:可以的,您只需增加更多的電阻。經典的四電阻差分放大器可因應許多量測上的難題。但總有一些應用需要的彈性比這些放大器所能提供的更高。由于在差分放大器中電阻匹配
2020-01-02 09:36:05
如何使用全差分放大器實現單端至差分轉換?如何使用有源匹配電路改善寬帶全差分放大器的噪聲性能?
2021-04-13 06:40:17
如何選擇電阻網絡的阻值?如何利用電阻網絡調整差分放大器的固定增益?
2021-04-12 06:11:34
β 。因為固定增益放大器的增益是已知的,所以能夠很簡單地計算出β。β 的量正好是輸出信號返回至運算放大器的同相輸入端的一部分。記住,反饋會通過β 路徑至基準引腳,反饋信號會通過兩個電阻的分壓器(見圖3
2022-02-14 09:42:24
可以增加固定增益差分放大器的增益嗎?答:可以的,您只需增加更多的電阻。經典的四電阻差分放大器可因應許多量測上的難題。但總有一些應用需要的彈性比這些放大器所能提供的更高。由于在差分放大器中電阻匹配
2019-12-27 08:00:00
通過精確匹配的電阻網絡提高差分放大器的共模抑制比
2021-01-28 06:19:27
為了不影響工藝水平的發展如何消除差分放大器中的不匹配效應?
2021-04-07 06:12:25
如何計算差分放大器電路的增益,如何分析差分放大器電路?
2023-11-28 07:18:45
晶體管運算放大器,則我們會得到 30mV 甚至更高的失調電壓。精確匹配組件的這種能力包括片上電阻器的使用。 集成差動放大器利用高精度片上電阻器匹配和激光修整。這些集成器所擁有的卓越的共模抑制性能
2018-09-26 11:26:09
作者:TI專家 Bruce Trump通過上一篇文章,我們知道,集成差動放大器的高精確匹配的電阻器對于獲得需共模抑制至關重要。然而,在一種相對常見的情況下,1% 電阻器和一個較好的運算放大器便可
2018-09-26 11:25:50
ADA4940的輸入阻抗設計得這么???就算前級輸出阻抗為50歐,如果將后級ADA4940輸入阻抗設計得更大豈不是 更好?這樣對前級得信號源來講,負擔就小。
我一直也是這樣設計運放鏈路的,今天看到差分放大器
2023-11-17 10:50:18
DN1023- 精密匹配電阻器自動改善差分放大器CMRR- 這是如何
2019-09-12 10:22:02
如題,想請教一下可變增益放大器AD8369后端接模數轉換器AD9268怎么匹配?AD9268前接50歐阻抗的手冊里面有(下圖),可AD8369輸出為200歐阻抗,不知道該怎么接?不知道差分阻抗匹配怎么計算?@
2018-12-25 11:40:36
利用精密匹配的電阻器網絡實現高精度放大器和ADC的精密匹配
2021-04-13 06:23:33
與輸入設備實現耦合。 “輸入阻抗”只是電路的一個輸入特性,同樣不需要進行阻抗匹配。輸入阻抗太低會加大前級輸出的負擔,造成較大的信號傳輸損失,嚴重時會造成輸出信號的失真。 3.負載阻抗:放大器輸出端應該
2017-09-05 21:56:53
與輸入設備實現耦合。 “輸入阻抗”只是電路的一個輸入特性,同樣不需要進行阻抗匹配。輸入阻抗太低會加大前級輸出的負擔,造成較大的信號傳輸損失,嚴重時會造成輸出信號的失真。 3.負載阻抗:放大器輸出端應該
2017-09-06 15:00:11
,運算放大器的輸入晶體管需要精確匹配來提供低補償電壓。如果我們一定要在運算放大器中使用分立晶體管,我們需要將補償電壓控制在30mV或以上。這還需要準確匹配片內電阻。圖1反向運算放大器配置集成差分放大器
2019-04-19 11:57:36
,運算放大器的輸入晶體管需要精確匹配來提供低補償電壓。如果我們一定要在運算放大器中使用分立晶體管,我們需要將補償電壓控制在30mV或以上。這還需要準確匹配片內電阻。圖一 反向運算放大器配置 集成差分放大器
2018-08-10 14:03:51
,運算放大器的輸入晶體管需要精確匹配來提供低補償電壓。如果我們一定要在運算放大器中使用分立晶體管,我們需要將補償電壓控制在30mV或以上。這還需要準確匹配片內電阻。圖一反向運算放大器配置 集成差分放大器
2019-04-26 10:21:29
%包括芯片上精密電阻,提供固定增益,誤差低至+/-0.35%一種精密的運算放大器具有低失調電壓和低失調過溫漂移。精度通過采用自動調零技術來實現,這種技術中,次級放大器抵消主放大器的偏移。結果是大幅減少
2018-10-22 08:57:48
一個標準的運放差分放大器電路如下:當電阻R1 = R2和R3 = R4時,上述差分放大器的傳遞函數可以簡化為以下表達式:增益 Gain = Vout / (V2 - V1)全差分電路是使用兩個差分
2022-01-25 06:25:16
單片差分放大器是集成電路,包含一個運算放大器(運放)以及不少于四個采用相同封裝的精密電阻器。對需要將差分信號轉換成單端信號同時抑制共模信號的模擬設計人員而言,它們是非常有用的構建塊。例如,圖1所示
2019-03-18 06:30:00
低固定增益差分放大器的噪聲測量面臨著更大的問題,它集成反饋和增益電阻,不方便使用高增益配置。此外,為了與頻譜分析儀接口,需要進行差分單端轉換。第二級放大器可
2010-11-27 16:32:12
35 差分放大器抑制共模電壓的能力由增益設置電阻的比率匹配決定;匹配度越高,共模抑制比(CMR)越高。對于采用0.1% 外部電阻的離散放大器,CMR 限制為54 dB。集成緊密激光調整的
2010-11-27 16:45:36
32
高輸入阻抗差分放大器
2009-03-20 10:36:57
1772 ![](https://file1.elecfans.com//web2/M00/A4/A4/wKgZomUMNRaAOrBAAAEVRVGp6kY727.jpg)
增益可變的差分放大器
2009-03-20 11:17:04
1092 ![](https://file1.elecfans.com//web2/M00/A4/A4/wKgZomUMNRiAZC6hAACKQ5lEp60815.jpg)
差分放大器的工作原理
差分放大器也叫差動放大器是一種將兩個輸入端電壓的差以一固定增益放大的電子放大器,有時簡稱為“差放”。差分放大器通常
2009-03-22 15:53:39
33349 ![](https://file1.elecfans.com//web2/M00/A4/A6/wKgZomUMNR-AbUNZAAAKsxIqD2s538.jpg)
高阻抗差分放大器電路圖
2009-04-01 08:58:34
2301 ![](https://file1.elecfans.com//web2/M00/A4/B0/wKgZomUMNUqARAX1AAAmXJPKHBI138.jpg)
磁放大器阻抗匹配器電路圖
2009-07-03 13:35:06
715 ![](https://file1.elecfans.com//web2/M00/A5/18/wKgZomUMNumAfdNkAAKk2gpgCn4749.jpg)
差分放大器也叫差動放大器是一種將兩個輸入端電壓的差以一固定增益放大的電子放大器,有時簡稱為“差放”。差分放大器通常被用作功率放大器(簡稱“功放”)和發射極耦合邏輯電路 (ECL, Emitter Coupled Logic) 的輸入級。
2017-05-15 16:13:20
21422 ![](https://file1.elecfans.com//web2/M00/A6/C0/wKgZomUMQB6AFPXFAAApfBViLc8166.png)
INA105是一個單位增益差分放大器組成的一個高級運算放大器和一個片內精密電阻網絡。自備INA105使得許多應用的理想選擇。一個這樣的應用是精確的電平移動。 圖1顯示了一個單位增益差分放大器的一般
2017-06-27 15:33:17
21 配有計算公式的單端至 50? 輸入差分放大器實例。采用 AC 耦合時阻抗匹配是僅有的問題。另外,AC 耦合還可實現自動的輸入至輸出共模電平移位。 采用固定增益集成型電阻器實現至差分放大器的阻抗匹配
2017-12-06 09:40:38
328 ![](https://file1.elecfans.com//web2/M00/A7/07/wKgZomUMQeuAdhQOAAAcMwnOrTs225.jpg)
本例示出了一款單端至差分放大器,該放大器具有至一個 75Ω 信號源的匹配以及從一個 2.5V 輸入共模電壓至一個 1.25V 輸出共模電壓的電平移位 (這是從一個 5V 單端電路至一個 3V
2018-06-29 18:38:55
220
本例展示了一個單端至差分放大器,具備匹配75Ω的阻抗,和從2.5V輸入共模轉換為1.25V輸出共模電壓的特性(典型的電平轉換需要從5V單端到3V差分從而驅動一個高速ADC),圖中單端至差分放大器
2018-06-29 18:39:36
234 Analog Devices, Inc.(ADI)宣布推出LTC6363-0.5、LTC6363-1和LTC6363-2精準、固定增益、全差分放大器,這是備受認可的 LTC6363 放大器之超精準
2018-09-01 16:24:00
4549 的增益精度和共模抑制。差分放大器是許多通用電路的基礎,INA105提供精密差分放大器的功能,無需昂貴的精密電阻網絡。INA105采用8腳塑封DIP、TD99金屬封裝、SO-8表面封裝。INA105可用于差分放大、儀表放大、單位增益反相放大、增益1/2放大、增益2同相放大、平均
2019-02-08 00:12:01
3683 固定增益差分放大器簡化對高速 ADC 的驅動
2021-03-21 03:06:00
10 DN1023-精密匹配電阻器自動提高差分放大器共模抑制比-方法如下
2021-05-11 19:58:22
4 LTC6406阻抗匹配電平移位演示電路差動放大器
2021-06-07 12:21:50
3 LTC6404-1演示電路-全差分放大器的阻抗匹配和噪聲測量
2021-06-08 16:19:52
5 LTC6400-20演示電路-全差分放大器的單端阻抗匹配
2021-06-08 16:57:55
2 LTC6400-20演示電路-全差分放大器的差分阻抗匹配
2021-06-08 17:13:28
9 單片差分放大器是集成電路,包含一個運算放大器(運放)以及不少于四個采用相同封裝的精密電阻器。對需要將差分信號轉換成單端信號同時抑制共模信號的模擬設計人員而言,它們是非常有用的構建塊。例如,圖1所示
2021-11-24 09:18:05
3444 Other Parts Discussed in Post: INA133作者:TI專家 Bruce Trump
通過上一篇文章,我們知道,集成差動放大器的高精確匹配的電阻器對于獲得需共模抑制
2021-11-19 16:02:46
1305 在差分放大器中電阻匹配直接影響到增益誤差和共模抑制比(CMRR),所以將這些電阻集成到同一個裸片上可以實現高性能。但是,僅僅依靠內部電阻來設置增益,用戶就無法在制造商的設計選擇之外靈活選擇自己想要的增益。 在信號鏈中使用固定增益放大器
2021-11-16 14:57:00
3440 ![](https://file.elecfans.com/web2/M00/1D/BC/pYYBAGGTWMiAZdByAAAN77hOhDE160.jpg)
JFW的在線阻抗匹配焊盤型號如下表所示。阻抗匹配焊盤使用內部電阻器來設計,內部電阻器被配置為將每一側的阻抗匹配到不同的阻抗。
2022-10-28 16:48:55
815 、容差和漂移。為此,使用高精度運算放大器。同樣重要的是放大器電路的外部元件,尤其是電阻器,它們應該具有匹配的比率,而不是任意選擇的比率。
2022-12-22 16:15:40
1349 ![](https://file.elecfans.com//web2/M00/86/28/pYYBAGOkEi-AF53PAAA7CZNcivo618.jpg)
通過增加外部電阻網絡,可以將固定增益差分放大器(如MAX98300)的增益降低到所需的增益電平,但必須考慮內部電阻的負載效應。本筆記包括用于計算這些效應的公式,以及用于選擇網絡中所需電阻值的電子表格鏈接。
2023-01-16 15:39:52
919 ![](https://file.elecfans.com//web2/M00/8A/E1/poYBAGPE_0yAFRElAAAizbkXMyU997.gif)
全差分放大器通常用于將單端信號轉換為差分信號,這種設計需要考慮三個重要因素:單端源的阻抗必須與差分放大器的單端阻抗匹配,放大器的輸入必須保持在共模電壓限值內,輸入信號必須電平轉換為以所需輸出共模電壓為中心的信號。
2023-02-08 16:13:10
918 全差分放大器通常用于將單端信號轉換為差分信號,這種設計需要考慮三個重要因素:單端源的阻抗必須與差分放大器的單端阻抗匹配,放大器的輸入必須保持在共模電壓限值內,輸入信號必須電平轉換為以所需輸出共模電壓為中心的信號。
2023-02-13 11:06:00
985 經典的四電阻差動放大器解決了許多困難的測量問題。然而,總有一些應用需要比這些放大器提供的更大的靈活性。由于差動放大器中電阻的匹配直接影響增益誤差和共模抑制比(CMRR),因此在單個芯片上實現這些電阻可實現最佳性能。然而,僅依靠內部電阻來設置增益,用戶無法靈活地選擇制造商設計選擇之外的所需增益。
2023-02-15 12:32:38
1078 ![](https://file.elecfans.com//web2/M00/91/6E/pYYBAGPsYGiALyh9AAAjVKEXLuY270.png)
阻抗匹配電路決定了功率放大器輸出至負載的最大功率,是功率放大器電路設計中重要的一個環節。
2023-06-30 14:39:26
3946 ![](https://file1.elecfans.com/web2/M00/8B/C5/wKgaomSeeDOAdKgcAAD0gNUA9Qw639.jpg)
差分放大器增益計算公式 差分放大器的增益計算公式是用來計算差分放大電路輸出電壓與輸入電壓之間的比例關系的。這個公式在差分放大器電路的設計和優化中起著至關重要的作用,因為它可以幫助工程師預測和控制
2023-09-04 17:18:35
1776 全差分放大器四個增益的關系是什么? 全差分放大器是一種廣泛應用于模擬電路中的放大器電路。它具有四個增益,包括差分模式增益、共模增益、輸入電容耦合增益和輸出電容耦合增益。這四個增益的關系是非
2023-09-18 15:08:16
890 差分放大器和單端放大器的區別是什么?? 差分放大器和單端放大器是常見的放大電路,但它們的工作原理和應用有很大的差異。差分放大器是一種由兩個互補的放大器組成的電路,用于提高差分信號的增益和抑制共模噪聲
2023-09-18 15:08:19
2488 放大器的增益和帶寬。因此,為了避免這些問題,需要進行阻抗匹配。 實現阻抗匹配的方法有很多種,最常見的是使用匹配網絡或特定的連接方式。匹配網絡的作用是將輸入和輸出阻抗調整到合適的匹配值,以提高效率和帶寬。常用的匹
2023-10-11 17:43:07
869 為什么高頻小信號諧振放大器中要考慮阻抗匹配?如何實現阻抗匹配?常用有哪些連接方式? 一、高頻小信號諧振放大器的介紹 高頻小信號諧振放大器,是一種廣泛應用于無線通信、雷達、衛星通信、微波通信等領域
2023-10-20 14:55:44
679 低噪聲放大器輸入端和輸出端匹配原則是什么?阻抗匹配的目的是什么? 低噪聲放大器輸入端和輸出端匹配原則是什么? 低噪聲放大器是電路系統中的一個非常重要的部分,利用它可以增強信號的弱度并減少噪聲的干擾
2023-10-20 14:55:47
872 帶恒流源的差分放大器如何提高共模抑制比的? 差分放大器是常見的電路設計,它可以提供高增益和高共模抑制比。但是,由于器件的不匹配和溫度變化等因素,共模電壓可能會出現偏移,使得差分電路的性能受到影響
2023-10-23 10:29:16
892
評論