9012三級管開關電路圖(一)
1、基極必須串接電阻,保護基極,保護CPU的IO口。
2、基極根據PNP或者NPN管子加上拉電阻或者下拉電阻。
3、集電極電阻阻值根據驅動電流實際情況調整。同樣基極電阻也可以根據實際情況調整。
基極和發(fā)射極需要串接電阻,該電阻的作用是在輸入呈高阻態(tài)時使晶體管可靠截止,極小值是在前級驅動使晶體管飽和時與基極限流電阻分壓后能夠滿足晶體管的臨界飽和,實際選擇時會大大高于這個極小值,通常外接干擾越小、負載越重準許的阻值就越大,通常采用10K量級。
防止三極管受噪聲信號的影響而產生誤動作,使晶體管截止更可靠!三極管的基極不能出現懸空,當輸入信號不確定時(如輸入信號為高阻態(tài)時),加下拉電阻,就能使有效接地。
特別是GPIO連接此基極的時候,一般在GPIO所在IC剛剛上電初始化的時候,此GPIO的內部也處于一種上電狀態(tài),很不穩(wěn)定,容易產生噪聲,引起誤動作!加此電阻,可消除此影響(如果出現一尖脈沖電平,由于時間比較短,所以這個電壓很容易被電阻拉低;如果高電平的時間比較長,那就不能拉低了,也就是正常高電平時沒有影響)!
但是電阻不能過小,影響泄漏電流!(過小則會有較大的電流由電阻流入地)
當三極管開關作用時,ON和OFF時間越短越好,為了防止在OFF時,因晶體管中的殘留電荷引起的時間滯后,在B,E之間加一個R起到放電作用。
9012三級管開關電路圖(二)
9012三級管開關電路圖(三)
9012三級管開關電路圖(四)
9012三極管驅動蜂鳴器電路原理圖
9012三級管開關電路圖(五)
解釋:當晶體管突然導通(IN信號突然發(fā)生跳變),C1瞬間短路,為三極管快速提供基極電流,這樣加速了晶體管的導通。當晶體管突然關斷(IN信號突然發(fā)生跳變),C1也瞬間導通,為卸放基極電荷提供一條低阻通道,這樣加速了晶體管的關斷。C通常取值幾十到幾百皮法。電路中R2是為了保證沒有IN輸入高電平時三極管保持關斷狀態(tài);R4是為了保證沒有IN輸入低電平時三極管保持關斷狀態(tài)。R1和R3是基極電流限流用。
9012三級管開關電路圖(六)
截至目前為止,我們都假設當三極管開關導通時,其基極與射極之間是完全短路的。事實并非如此,沒有任何三極管可以完全短路而使VCE=0,大多數的小信號硅質三極管在飽和時,VCE(飽和)值約為0.2伏特,縱使是專為開關應用而設計的交換三極管,其VCE(飽和)值頂多也只能低到0.1伏特左右,而且負載電流一高,VCE(飽和)值還會有些許的上升現象,雖然對大多數的分析計算而言,VCE(飽和)值可以不予考慮,但是在測試交換電路時,必須明白VCE(飽和)值并非真的是0。
雖然VCE(飽和)的電壓很小,本身微不足道,但是若將幾個三極管開關串接起來,其總和的壓降效應就很可觀了,不幸的是機械式的開關經常是采用串接的方式來工作的,如圖3(a)所示,三極管開關無法模擬機械式開關的等效電路(如圖3(b)所示)來工作,這是三極管開關的一大缺點。
圖3 ? 三極管開關與機械式開關電路
幸好三極管開關雖然不適用于串接方式,卻可以完美的適用于并接的工作方式,如圖4所示者即為一例。
三極管開關和傳統(tǒng)的機械式開關相較,具有下列四大優(yōu)點﹕
圖4 ?三極管開關之并聯聯接
(1)三極管開關不具有活動接點部份,因此不致有磨損之慮,可以使用無限多次,
一般的機械式開關,由于接點磨損,頂多只能使用數百萬次左右,而且其接點易受污損而影響工作,因此無法在臟亂的環(huán)境下運作,三極管開關既無接點又是密封的,因此無此顧慮。
(2)三極管開關的動作速度較一般的開關為快,一般開關的啟閉時間是以毫秒(ms)來計算的,三極管開關則以微秒(μs)計。
(3)三極管開關沒有躍動(bounce)現象。一般的機械式開關在導通的瞬間會有快速的連續(xù)啟閉動作,然后才能逐漸達到穩(wěn)定狀態(tài)。
(4)利用三極管開關來驅動電感性負載時,在開關開啟的瞬間,不致有火花產生。反之,當機械式開關開啟時,由于瞬間切斷了電感性負載樣上的電流,因此電感之瞬間感應電壓,將在接點上引起弧光,這種電弧非但會侵蝕接點的表面,亦可能造成干擾或危害。
評論