數據寄存器,數據寄存器是什么意思
數據寄存器,數據寄存器是什么意思
數據寄存器
數據寄存器包括累加器AX、基址寄存器BX、計數寄存器CX和數據寄存器DX。這4個16位寄存器又可分別分成高8位(AH、BH、CH、DH)和低8位(AL、BL、CL、DL)。因此它們既可作為4個16位數據寄存器使用,也可作為8個8位數據寄存器使用,在編程時可存放源操作數、目的操作數或運算結果。
數據寄存器是存放操作數、運算結果和運算的中間結果,以減少訪問存儲器的次數,或者存放從存儲器讀取的數據以及寫入存儲器的數據的寄存器。
8086 有14個16位寄存器,這14個寄存器按其用途可分為(1)通用寄存器、(2)指令指針、(3)標志寄存器和(4)段寄存器等4類。
(1)通用寄存器有8個, 又可以分成2組,一組是數據寄存器(4個),另一組是指針寄存器及變址寄存器(4個).
顧名思義,通用寄存器是那些你可以根據自己的意愿使用的寄存器,修改他們的值通常不會對計算機的運行造成很大的影響。
數據寄存器分為:
AH&AL=AX(accumulator):累加寄存器,常用于運算;在乘除等指令中指定用來存放操作數,另外,所有的I/O指令都使用這一寄存器與外界設備傳送數據.
BH&BL=BX(base):基址寄存器,常用于地址索引;
CH&CL=CX(count):計數寄存器,常用于計數;常用于保存計算值,如在移位指令,循環(loop)和串處理指令中用作隱含的計數器.
DH&DL=DX(data):數據寄存器,常用于數據傳遞。
他們的特點是,這4個16位的寄存器可以分為高8位: AH, BH, CH, DH.以及低八位:AL,BL,CL,DL。這2組8位寄存器可以分別尋址,并單獨使用。
另一組是指針寄存器和變址寄存器,包括:
SP(Stack Pointer):堆棧指針,與SS配合使用,可指向目前的堆棧位置;
BP(Base Pointer):基址指針寄存器,可用作SS的一個相對基址位置;
SI(Source Index):源變址寄存器可用來存放相對于DS段之源變址指針;
DI(Destination Index):目的變址寄存器,可用來存放相對于 ES 段之目的變址指針。
這4個16位寄存器只能按16位進行存取操作,主要用來形成操作數的地址,用于堆棧操作和變址運算中計算操作數的有效地址。
(2) 指令指針IP(Instruction Pointer)
指令指針IP是一個16位專用寄存器,它指向當前需要取出的指令字節,當BIU從內存中取出一個指令字節后,IP就自動加1,指向下一個指令字節。注意,IP指向的是指令地址的段內地址偏移量,又稱偏移地址(Offset Address)或有效地址(EA,Effective Address)。
(3)標志寄存器FR(Flag Register)
8086有一個18位的標志寄存器FR,在FR中有意義的有9位,其中6位是狀態位,3位是控制位。
OF: 溢出標志位OF用于反映有符號數加減運算所得結果是否溢出。如果運算結果超過當前運算位數所能表示的范圍,則稱為溢出,OF的值被置為1,否則,OF的值被清為0。
DF:方向標志DF位用來決定在串操作指令執行時有關指針寄存器發生調整的方向。
IF:中斷允許標志IF位用來決定CPU是否響應CPU外部的可屏蔽中斷發出的中斷請求。但不管該標志為何值,CPU都必須響應CPU外部的不可屏蔽中斷所發出的中斷請求,以及CPU內部產生的中斷請求。具體規定如下:
(1)、當IF=1時,CPU可以響應CPU外部的可屏蔽中斷發出的中斷請求;
(2)、當IF=0時,CPU不響應CPU外部的可屏蔽中斷發出的中斷請求。
TF:跟蹤標志TF。該標志可用于程序調試。TF標志沒有專門的指令來設置或清楚。
(1)如果TF=1,則CPU處于單步執行指令的工作方式,此時每執行完一條指令,就顯示CPU內各個寄存器的當前值及CPU將要執行的下一條指令。
(2)如果TF=0,則處于連續工作模式。
SF:符號標志SF用來反映運算結果的符號位,它與運算結果的最高位相同。在微機系統中,有符號數采用補碼表示法,所以,SF也就反映運算結果的正負號。運算結果為正數時,SF的值為0,否則其值為1。當運算結果沒有產生溢出時,運算結果等于邏輯結果(即因該得到的正確的結果),此時SF表示的是邏輯結果的正負,當運算結果產生溢出時,運算結果不等于邏輯結果,此時的SF值所表示的正負情況與邏輯結果相反,即:SF=0時,邏輯結果為負,SF=1時,邏輯結果為正。
ZF: 零標志ZF用來反映運算結果是否為0。如果運算結果為0,則其值為1,否則其值為0。在判斷運算結果是否為0時,可使用此標志位。
AF:下列情況下,輔助進位標志AF的值被置為1,否則其值為0:
(1)、在字操作時,發生低字節向高字節進位或借位時;
(2)、在字節操作時,發生低4位向高4位進位或借位時。
PF:奇偶標志PF用于反映運算結果中“1”的個數的奇偶性。如果“1”的個數為偶數,則PF的值為1,否則其值為0。
CF:進位標志CF主要用來反映運算是否產生進位或借位。如果運算結果的最高位產生了一個進位或借位,那么,其值為1,否則其值為0。
(4)段寄存器(Segment Register)
為了運用所有的內存空間,8086設定了四個段寄存器,專門用來保存段地址:
CS(Code Segment):代碼段寄存器;
DS(Data Segment):數據段寄存器;
SS(Stack Segment):堆棧段寄存器;
ES(Extra Segment):附加段寄存器。
當一個程序要執行時,就要決定程序代碼、數據和堆棧各要用到內存的哪些位置,通過設定段寄存器 CS,DS,SS 來指向這些起始位置。通常是將DS固定,而根據需要修改CS。所以,程序可以在可尋址空間小于64K的情況下被寫成任意大小。 所以,程序和其數據組合起來的大小,限制在DS 所指的64K內,這就是COM文件不得大于64K的原因。8086以內存做為戰場,用寄存器做為軍事基地,以加速工作。
以上是8086寄存器的整體概況, 自80386開始,PC進入32bit時代,其尋址方式,寄存器大小,功能等都發生了變化。
=============================以下是80386的寄存器的一些資料======================================
寄存器都是32-bits寬。
A、通用寄存器
下面介紹通用寄存器及其習慣用法。顧名思義,通用寄存器是那些你可以根據自己的意愿使用的寄存器,修改他們的值通常不會對計算機的運行造成很大的影響。通用寄存器最多的用途是計算。
EAX:通用寄存器。相對其他寄存器,在進行運算方面比較常用。在保護模式中,也可以作為內存偏移指針(此時,DS作為段 寄存器或選擇器)
EBX:通用寄存器。通常作為內存偏移指針使用(相對于EAX、ECX、EDX),DS是默認的段寄存器或選擇器。在保護模式中,同樣可以起這個作用。
ECX:通用寄存器。通常用于特定指令的計數。在保護模式中,也可以作為內存偏移指針(此時,DS作為 寄存器或段選擇器)。
EDX:通用寄存器。在某些運算中作為EAX的溢出寄存器(例如乘、除)。在保護模式中,也可以作為內存偏移指針(此時,DS作為段 寄存器或選擇器)。
同AX分為AH&AL一樣,上述寄存器包括對應的16-bit分組和8-bit分組。
B、用作內存指針的特殊寄存器
ESI:通常在內存操作指令中作為“源地址指針”使用。當然,ESI可以被裝入任意的數值,但通常沒有人把它當作通用寄存器來用。DS是默認段寄存器或選擇器。
EDI:通常在內存操作指令中作為“目的地址指針”使用。當然,EDI也可以被裝入任意的數值,但通常沒有人把它當作通用寄存器來用。DS是默認段寄存器或選擇器。
EBP:這也是一個作為指針的寄存器。通常,它被高級語言編譯器用以建造‘堆棧幀'來保存函數或過程的局部變量,不過,還是那句話,你可以在其中保存你希望的任何數據。SS是它的默認段寄存器或選擇器。
注意,這三個寄存器沒有對應的8-bit分組。換言之,你可以通過SI、DI、BP作為別名訪問他們的低16位,卻沒有辦法直接訪問他們的低8位。
C、段選擇器:
實模式下的段寄存器到保護模式下搖身一變就成了選擇器。不同的是,實模式下的“段寄存器”是16-bit的,而保護模式下的選擇器是32-bit的。
CS 代碼段,或代碼選擇器。同IP寄存器(稍后介紹)一同指向當前正在執行的那個地址。處理器執行時從這個寄存器指向的段(實模式)或內存(保護模式)中獲取指令。除了跳轉或其他分支指令之外,你無法修改這個寄存器的內容。
DS 數據段,或數據選擇器。這個寄存器的低16 bit連同ESI一同指向的指令將要處理的內存。同時,所有的內存操作指令 默認情況下都用它指定操作段(實模式)或內存(作為選擇器,在保護模式。這個寄存器可以被裝入任意數值,然而在這么做的時候需要小心一些。方法是,首先把數據送給AX,然后再把它從AX傳送給DS(當然,也可以通過堆棧來做).
ES 附加段,或附加選擇器。這個寄存器的低16 bit連同EDI一同指向的指令將要處理的內存。同樣的,這個寄存器可以被裝入任意數值,方法和DS類似。
FS F段或F選擇器(推測F可能是Free?)。可以用這個寄存器作為默認段寄存器或選擇器的一個替代品。它可以被裝入任何數值,方法和DS類似。
GS G段或G選擇器(G的意義和F一樣,沒有在Intel的文檔中解釋)。它和FS幾乎完全一樣。
SS 堆棧段或堆棧選擇器。這個寄存器的低16 bit連同ESP一同指向下一次堆棧操作(push和pop)所要使用的堆棧地址。這個寄存器也可以被裝入任意數值,你可以通過入棧和出棧操作來給他賦值,不過由于堆棧對于很多操作有很重要的意義,因此,不正確的修改有可能造成對堆棧的破壞。
* 注意 一定不要在初學匯編的階段把這些寄存器弄混。他們非常重要,而一旦你掌握了他們,你就可以對他們做任意的操作了。段寄存器,或選擇器,在沒有指定的情況下都是使用默認的那個。這句話在現在看來可能有點稀里糊涂,不過你很快就會在后面知道如何去做。
指令指針寄存器:
EIP 這個寄存器非常的重要。這是一個32位寬的寄存器 ,同CS一同指向即將執行的那條指令的地址。不能夠直接修改這個寄存器的值,修改它的唯一方法是跳轉或分支指令。(CS是默認的段或選擇器)
上面是最基本的寄存器。下面是一些其他的寄存器,你甚至可能沒有聽說過它們。(都是32位寬):
CR0, CR2, CR3(控制寄存器)。舉一個例子,CR0的作用是切換實模式和保護模式。
還有其他一些寄存器,D0, D1, D2, D3, D6和D7(調試寄存器)。他們可以作為調試器的硬件支持來設置條件斷點。
TR3, TR4, TR5, TR6 和 TR? 寄存器(測試寄存器)用于某些條件測試。
非常好我支持^.^
(13) 23.6%
不好我反對
(42) 76.4%
相關閱讀:
- [電子說] mos管電流方向是單向 2023-09-07
- [控制/MCU] STM32開發板之ADC功能框圖講解 2023-08-14
- [電子說] plc通信協議 plc通信原理 2023-06-26
- [PLC/PAC] 介紹三菱FX系列PLC中常用的軟器件—計數器和數據寄存器 2023-05-24
- [工業控制] 三菱fx系列plc編程通信協議實例 2023-05-09
- [工業控制] 三菱FX系列的plc需要掌握哪些常用指令? 2023-05-08
- [工業控制] 初學者應該知道的PLC編程規范及建議 2023-04-14
- [控制/MCU] 16位寄存器數據范圍 32位寄存器數據范圍 數據寄存器多少位怎么算 2023-03-31
( 發表人:admin )