91在线观看视频-91在线观看视频-91在线观看免费视频-91在线观看免费-欧美第二页-欧美第1页

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

AI寒冬將至?深度學習的“新江湖”

倩倩 ? 來源:lq ? 作者:錢江晚報 ? 2019-09-20 15:29 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

自2018年底發布全棧全場景AI戰略以來,華為憑借其巨大算力優勢強勢挺進AI江湖,特別是今年8月23日發布全球算力最強的AI處理器昇騰910,迅速將其江湖地位拉升至全球頭部陣列。各路巨頭也迅速意識到:華為不只有5G手機,在基礎研究中的巨大投入正在幫助其占據未來制高點。

由于AI生態形成一直處于“不瘟不火”的狀態,也讓業界為AI前路多了幾分擔憂,特別是算力稀缺問題難以解決,更是為其蒙上了一層陰影。

在“AI寒冬將至”的疑惑之中,后入局的華為卻絲毫沒有放慢其前進的腳步,一年之內,AI處理器、計算框架相繼落地。洞察從何而來?自信從何而來?底牌從何而來?

“讓算力更加普惠,讓算法更加簡單”,即將舉行的2019全聯接大會,華為又將發布最新的AI和云產品與解決方案。答案,即將浮出水面。

AI寒冬將至?

1956年,時任達特矛斯學院助理教授的約翰·麥卡錫組織召集了達特矛斯討論,正是在這次會議上,第一次正式提出了“人工智能”的定義。從那以后的60年里,人工智能經歷了兩次發展的低谷,即所謂的“冬天”,但其發展的腳步并未就此停止。

2018年,在一次業界會議上,創新工場CEO李開復在講話中表示,機器學習最大的突破是在9年前取得的,之后再沒有重大突破。

可以看到,最近持相似觀點的講話越來越多。多年來,深度學習一直處于人工智能革命的最前沿,許多人相信深度學習將帶領我們進入新的時代。然而,從幾年前如火如荼,到如今的逐漸冷卻,浪潮一再的退去。面對疲軟的風口,人工智能將何去何從,AI寒冬是否將至,深度學習能否助力AI技術續寫輝煌?

深度學習的“新江湖”

說到深度學習與人工智能的關系,簡單來說就是:將海量數據通過深度學習進行處理后形成一個模型,再將模型應用到具體的業務環境中,這就是人工智能。可以說,深度學習是人工智能的重要推動力量。

當然,深度學習只是人工智能的一種實現方式,屬于機器學習的子集。深度學習本來并不是一種獨立的學習方法,其本身也會用到有監督和無監督等學習方法來訓練深度神經網絡。但由于近幾年該領域發展迅猛,一些特有的學習手段相繼被提出(如殘差網絡),因此越來越多的人將其單獨看作一種學習的方法。

最初的深度學習是利用深度神經網絡來解決特征表達的一種學習過程。為了提高深層神經網絡的訓練效果,人們對神經元的連接方法和激活函數等方面做出相應的調整。其實有不少想法早年間也曾有過,但由于當時訓練數據量不足、計算能力落后,因此最終的效果不盡如人意。

隨著海量標注數據的出現和算法的不斷提升,深度學習摧枯拉朽般地實現了各種任務,使得似乎所有的機器輔助功能都變為可能,比如無人駕駛等。

深度學習如此無所不能,主要得益于數據、算法、算力三者的共同提升。現在可以利用的數據特別是人工標注的數據比較豐富,使得人類能從數據中學到更多東西。技術上的發展使得超大規模的模型訓練也成為了可能,比如上千層的深度神經網絡,這在以前是不可想象的。

但超大規模模型的復雜度成指數級增加,以NLP領域的流行網絡BERT為例,其包含最大3.4億個參數,相比原來比較簡單的AlexNet等網絡,算力需求大概增長了10000倍。這也是OpenAI等組織說AI算力大概每年增長10倍的重要原因之一。

由于以上原因,再加上某些企業的慣例性供貨緊張,各研究機構和大學科研室的算力資源一直處于緊張的狀態,大家經常排隊遞交訓練作業,幾天才能等到結果。這也引來了深度學習領域的經典靈魂拷問:深度學習什么研究方向對算力要求不高?如何降低算法對算力的需求?

華為AI“破陣”

面對洶涌而至的海量數據和不斷復雜的算法,全球每年新增數據20ZB,AI算力需求每年增長10倍,這一速度已經遠超摩爾定律關于性能翻倍的周期。如何解決這一問題業界有不同的探索:

l 通過剪枝、權值共享、算法優化等方式降低模型大小,降低對算力的需求,尤其對于移動端設備;

l 從小樣本進行有效學習,降低對數據規模和算力的依賴,這樣也可以減少標記的工作量;

l 設計專門針對深度學習的加速硬件,從而解決CPUGPU在芯片面積和效率上的代價問題。

這其中,最根本的方案還是通過硬件和系統的設計提升算力的供給程度,比如華為發布的昇騰系列AI處理器,采用達芬奇架構的AI內核針對深度學習進行優化設計,包含矩陣計算單元(Cube Unit)、向量計算單元(Vector Unit)和標量計算單元(Scalar Unit),結合了GPU、TPU、CPU的優點。尤其對于深度學習領域常用的矩陣乘加運算有數十倍的效率提升。其面向訓練領域的昇騰910 AI處理器,單芯片即可提供256TFLOPS的超強計算能力,是業界水平的兩倍。

但僅僅有芯片是不夠的,還需要通過高速低延時網絡將芯片組合起來,釋放出AI處理器的強大性能,配合數據并行、模型并行等的系統級優化設計才能提供超出現有水平的算力高峰。

據了解,2019華為全聯接大會上就將推出這方面的AI新品,如何破解算力稀缺難題,華為看來還有大招。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 華為
    +關注

    關注

    216

    文章

    35197

    瀏覽量

    255787
  • 機器學習
    +關注

    關注

    66

    文章

    8501

    瀏覽量

    134551
  • 深度學習
    +關注

    關注

    73

    文章

    5560

    瀏覽量

    122765
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    【「零基礎開發AI Agent」閱讀體驗】+ 入門篇學習

    很高興又有機會學習ai技術,這次試讀的是「零基礎開發AI Agent」,作者葉濤、管鍇、張心雨。 大模型的普及是近三年來的一件大事,萬物皆可大模型已成為趨勢。作為大模型開發應用中重要組成部分,提示詞
    發表于 05-02 09:26

    可智能深度學習AI攝像機模組方案

    、方案優勢 500/800萬像素CMOS傳感器。 專業級海思Hi3519DV500、 Hi3403/3402、星宸SSC338G。 可內嵌智能深度學習人臉算法,機動車識別、車牌識別、非機動車識別算法
    發表于 03-21 11:28

    行業首創:基于深度學習視覺平臺的AI驅動輪胎檢測自動化

    全球領先的輪胎制造商 NEXEN TIRE 在其輪胎生產檢測過程中使用了基于友思特伙伴Neurocle開發的AI深度學習視覺平臺,實現缺陷檢測率高達99.96%,是該行業首個使用AI
    的頭像 發表于 03-19 16:51 ?435次閱讀
    行業首創:基于<b class='flag-5'>深度</b><b class='flag-5'>學習</b>視覺平臺的<b class='flag-5'>AI</b>驅動輪胎檢測自動化

    AI Agent 應用與項目實戰》----- 學習如何開發視頻應用

    再次感謝發燒友提供的閱讀體驗活動。本期跟隨《AI Agent 應用與項目實戰》這本書學習如何構建開發一個視頻應用。AI Agent是一種智能應用,能夠根據用戶需求和環境變化做出相應響應。通常基于
    發表于 03-05 19:52

    軍事應用中深度學習的挑戰與機遇

    人工智能尤其是深度學習技術的最新進展,加速了不同應用領域的創新與發展。深度學習技術的發展深刻影響了軍事發展趨勢,導致戰爭形式和模式發生重大變化。本文將概述
    的頭像 發表于 02-14 11:15 ?529次閱讀

    AI自動化生產:深度學習在質量控制中的應用

    隨著科技的飛速發展,人工智能(AI)與深度學習技術正逐步滲透到各個行業,特別是在自動化生產中,其潛力與價值愈發凸顯。深度學習軟件不僅使人工和
    的頭像 發表于 01-17 16:35 ?687次閱讀
    <b class='flag-5'>AI</b>自動化生產:<b class='flag-5'>深度</b><b class='flag-5'>學習</b>在質量控制中的應用

    NPU在深度學習中的應用

    隨著人工智能技術的飛速發展,深度學習作為其核心驅動力之一,已經在眾多領域展現出了巨大的潛力和價值。NPU(Neural Processing Unit,神經網絡處理單元)是專門為深度學習
    的頭像 發表于 11-14 15:17 ?1892次閱讀

    AI干貨補給站 | 深度學習與機器視覺的融合探索

    ,幫助從業者積累行業知識,推動工業視覺應用的快速落地。本期亮點預告本期將以“深度學習與機器視覺的融合探索”為主題,通過講解深度學習定義、傳統機器視覺與
    的頭像 發表于 10-29 08:04 ?573次閱讀
    <b class='flag-5'>AI</b>干貨補給站 | <b class='flag-5'>深度</b><b class='flag-5'>學習</b>與機器視覺的融合探索

    Pytorch深度學習訓練的方法

    掌握這 17 種方法,用最省力的方式,加速你的 Pytorch 深度學習訓練。
    的頭像 發表于 10-28 14:05 ?648次閱讀
    Pytorch<b class='flag-5'>深度</b><b class='flag-5'>學習</b>訓練的方法

    GPU深度學習應用案例

    GPU在深度學習中的應用廣泛且重要,以下是一些GPU深度學習應用案例: 一、圖像識別 圖像識別是深度學習
    的頭像 發表于 10-27 11:13 ?1330次閱讀

    AI大模型與深度學習的關系

    AI大模型與深度學習之間存在著密不可分的關系,它們互為促進,相輔相成。以下是對兩者關系的介紹: 一、深度學習
    的頭像 發表于 10-23 15:25 ?2871次閱讀

    AI深度噪音抑制技術

    AI深度噪音抑制技術通過深度學習算法實現了對音頻中噪聲的智能消除,它在音頻清晰度提升、環境適應性、實時性和自然音質保留等方面展現了巨大的優勢。隨著A
    的頭像 發表于 10-17 10:45 ?1510次閱讀
    <b class='flag-5'>AI</b><b class='flag-5'>深度</b>噪音抑制技術

    AI for Science:人工智能驅動科學創新》第二章AI for Science的技術支撐學習心得

    人工智能在科學研究中的核心技術,包括機器學習深度學習、神經網絡等。這些技術構成了AI for Science的基石,使得AI能夠處理和分析
    發表于 10-14 09:16

    FPGA做深度學習能走多遠?

    ,共同進步。 歡迎加入FPGA技術微信交流群14群! 交流問題(一) Q:FPGA做深度學習能走多遠?現在用FPGA做深度學習加速成為一個熱門,深鑒科技,商湯,曠視科技等都有基于FPG
    發表于 09-27 20:53

    NVIDIA推出全新深度學習框架fVDB

    在 SIGGRAPH 上推出的全新深度學習框架可用于打造自動駕駛汽車、氣候科學和智慧城市的 AI 就緒型虛擬表示。
    的頭像 發表于 08-01 14:31 ?1127次閱讀
    主站蜘蛛池模板: 男生脱美女内裤内衣动态图 | 男人cao女人视频在线观看 | 中文三 级 黄 色 片 | 日本又粗又长一进一出抽搐 | 黄页网站视频免费 视频 | 黄色毛片播放 | 97色在线视频观看香蕉 | 狠狠干人人干 | 亚洲国产精品va在线观看麻豆 | 四虎影院永久免费 | 精品爱爱 | 日韩美女奶水喂男人在线观看 | 黄色大片日本 | 丁香六月综合激情 | 色五夜婷婷 | 最新色网站 | 亚色综合 | 91精品国产亚洲爽啪在线影院 | 国产成人教育视频在线观看 | 啪啪在线视频 | 99久久亚洲国产高清观看 | а中文在线天堂 | 婷婷五月花 | 性刺激的欧美三级视频 | 天天操操 | 狠狠干狠狠干 | 男人的天堂在线精品视频 | 天天爱夜夜 | 一本到在线观看视频不卡 | 五月婷婷免费视频 | 九色综合网 | 免费色在线 | 大量国产后进翘臀视频 | 国产亚洲一区二区三区在线 | 精品国产午夜久久久久九九 | 免费黄色 | 国产一级毛片午夜福 | 欧美一区二区三区黄色 | 久久亚洲国产精品五月天 | 国产婷婷色一区二区三区深爱网 | 97天天做天天爱夜夜爽 |