91在线观看视频-91在线观看视频-91在线观看免费视频-91在线观看免费-欧美第二页-欧美第1页

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

神經進化說的是什么?

倩倩 ? 來源:巡洋艦人工智能學堂 ? 2020-04-17 14:35 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

Nature新子刊Machine intelligence中有一篇12頁的綜述,匯總介紹了神經進化這一前沿的研究方向在神經網絡中的眾多應用。本文用5分鐘概述該文的主要觀點,對于不了解神經進化的讀者,本文將先帶你認識神經進化說的是什么?你不需要太多的背景知識,也能讀懂本文。

人工的神經網絡是依靠梯度的反向傳播來進行優化的,而在生物界中,神經網絡中并沒有指出優化方向的梯度,感知從下而上正向傳播,之后相近的刺激帶來共同激活的神經元,再用這些連接來對新事物編碼及預測,而一切都依賴于進化機制。所謂神經進化,就是用遺傳算法來進行神經網絡的結構生成,參數更新及整體的效率優化。其基本的循環是突變-》選擇-》繁衍-》再突變。

下圖來自莫煩Python視頻,其中對比了兩種神經進化的策略,一種是不固定網絡的結構,通過神經網絡間的交叉配對形成下一代的網絡,另一組是固定結構,每一代網絡中通過引入突變改變連接的強度,最終倆者都通過進化的優勝劣汰來實現神經網絡的最優化。

不同于傳統的隨機梯度下降,是基于對現在錯誤來源的外推決定下一步進化的方向,即使引入了隨機性,也只是在原有方向上引入高斯誤差,是一種事后的彌補,而神經進化是通過在下一代中引入在算法空間中性質完全不同的點,之后根據適應度在這些點之間進行內推,雖然速度慢,但是可以更大規模的并行處理,且能夠更好的避免陷入局部最優。

神經進化不止在監督學習中應用廣泛,在深度強化學習中也有廣泛的應用。Uber開發的開源工具Visual Inspector for Neuroevolution(VINE),可以用于神經演化的交互式數據可視化工具。而下文的作者之一也來自Uber的AI實驗室。

在結束背景介紹之后,進入這篇論文本身的介紹。作者首先指出了神經進化相比神經網絡的幾個獨特的能力,包括通過學習找到合適的網絡組成部分(例如激活函數),以及網絡的超參數(有幾層,每層有多少神經元)以及用于的學習策略本身。不同于AutoML的自動化調參,神經進化始終在搜索答案中保持著一個多樣的解法“種群”,而且由于神經進化的研究和傳統的神經網絡并沒有多少交集,因此倆者之間的匯總更容易擦出火花。

最初的神經進化關注小規模網絡的拓撲結構的演化,最初的進化算法僅僅是通過(神經元)連接矩陣間的權重加上隨機突變來展開,之后受到基因間調控網絡的啟發,對網絡結構展開了間接的編碼。隨著引入在倆個網絡結構中的雜交(crossover),神經進化可以探索更為復雜的網絡結構,但需要面對如何避免讓新生成的網絡結構由于缺少足夠的時間進行局部優化而無法發揮出其最優的性能,該方向上最顯著的成果是NeuroEvolution of Augmenting Topologies (NEAT)算法,該算法的成果包括模擬機器人行走的控制程序,下圖分別是使用遺傳算法和進化策略訓練模擬機器人走路(來自UberAI實驗室Mujoco 人)

在強化學習領域,natural evolutionary strategy可以在 Atari 游戲機上和Deep Q learning有相近的表現,而且這些算法的并行潛力使得這些算法在有足夠計算資源時,可以用更快的時間完成訓練,盡管神經進化需要的總的計算資源要多一些。神經進化在強化學習中的成功說明了神經進化方法可以用在現實中的復雜問題上。

Lehman將神經進化和梯度結合了起來。該方法的靈感來自是通過梯度去選擇出那些不那么危險的突變。由于強化學習中評估一個策略的適應度需要花費的比評估網絡本身要花費更多的資源,前者需要運行游戲或者模擬環境數回合,才能看到收益,而后者只需要去將網絡中的錯誤項前向傳播幾步即可。神經進化中對策略(policy)加以隨機的突變,部分突變不會影響策略的性能,但少部分會讓該策略徹底失效。通過對狀態和行為歸檔記錄,可以通過梯度信息對變異的大小進行縮放,從而避免突變后的策略對于當前的狀態過于激進或保守,從而使得在深度超過100層的網絡上可以使用神經進化的策略。

神經進化可以模擬真實進化中對多樣性和新奇策略的偏好,在要優化的目標中對全新的策略給予獎勵,從而避免陷入局部最優,或者以策略種群的多樣性為優化主要目標。在強化學習中,一個策略要想和其他策略不同,需要具有不同的基礎能力,從而使策略種群多樣性為優化目標好于人為設定的損失函數。

總結:神經進化在meta learning,多任務學習中都可以和現有方法結合。正如卷積操作就是一種編碼信息的方式,神經進化還可以找到更好的對信息進行間接編碼(Indirect coding)的方法以及通過進化策略重現出類似LSTM的網絡結構。強化學習中的自我對弈可以看成是神經進化的一種,而對策略多樣性的偏好也鼓勵了模型對新策略的探索。最后,在通向通用人工智能的路上,神經進化通過構建開放目地的(open-endedness)的系統,讓策略不帶有先驗目地的探索,模擬自然界的進化,最終得到一個足夠普適的智能系統。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 神經網絡
    +關注

    關注

    42

    文章

    4814

    瀏覽量

    103649
  • 梯度
    +關注

    關注

    0

    文章

    30

    瀏覽量

    10495
  • 強化學習
    +關注

    關注

    4

    文章

    269

    瀏覽量

    11604
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    驅動下一代E/E架構的神經脈絡進化—10BASE-T1S

    隨著“中央+區域”架構的演進,10BASE-T1S憑借其獨特優勢,將成為驅動下一代汽車電子電氣(E/E)架構“神經系統”進化的關鍵技術。
    的頭像 發表于 07-08 18:17 ?489次閱讀
    驅動下一代E/E架構的<b class='flag-5'>神經</b>脈絡<b class='flag-5'>進化</b>—10BASE-T1S

    “可升級的汽車”:從特斯拉到鴻蒙智行的進化

    硬件升級,正成為汽車進化的新賽點
    的頭像 發表于 04-14 12:31 ?301次閱讀
    “可升級的汽車”:從特斯拉到鴻蒙智行的<b class='flag-5'>進化</b>史

    BP神經網絡與卷積神經網絡的比較

    BP神經網絡與卷積神經網絡在多個方面存在顯著差異,以下是對兩者的比較: 一、結構特點 BP神經網絡 : BP神經網絡是一種多層的前饋神經網絡
    的頭像 發表于 02-12 15:53 ?673次閱讀

    BP神經網絡的優缺點分析

    BP神經網絡(Back Propagation Neural Network)作為一種常用的機器學習模型,具有顯著的優點,同時也存在一些不容忽視的缺點。以下是對BP神經網絡優缺點的分析: 優點
    的頭像 發表于 02-12 15:36 ?926次閱讀

    什么是BP神經網絡的反向傳播算法

    BP神經網絡的反向傳播算法(Backpropagation Algorithm)是一種用于訓練神經網絡的有效方法。以下是關于BP神經網絡的反向傳播算法的介紹: 一、基本概念 反向傳播算法是BP
    的頭像 發表于 02-12 15:18 ?775次閱讀

    BP神經網絡與深度學習的關系

    BP神經網絡與深度學習之間存在著密切的關系,以下是對它們之間關系的介紹: 一、BP神經網絡的基本概念 BP神經網絡,即反向傳播神經網絡(Backpropagation Neural N
    的頭像 發表于 02-12 15:15 ?863次閱讀

    BP神經網絡的基本原理

    BP神經網絡(Back Propagation Neural Network)的基本原理涉及前向傳播和反向傳播兩個核心過程。以下是關于BP神經網絡基本原理的介紹: 一、網絡結構 BP神經網絡通常由
    的頭像 發表于 02-12 15:13 ?864次閱讀

    大模型進化論:AI產業落地將卷向何方?

    大模型進化論:AI產業落地將卷向何方?
    的頭像 發表于 01-24 09:28 ?348次閱讀

    人工神經網絡的原理和多種神經網絡架構方法

    在上一篇文章中,我們介紹了傳統機器學習的基礎知識和多種算法。在本文中,我們會介紹人工神經網絡的原理和多種神經網絡架構方法,供各位老師選擇。 01 人工神經網絡 ? 人工神經網絡模型之所
    的頭像 發表于 01-09 10:24 ?1204次閱讀
    人工<b class='flag-5'>神經</b>網絡的原理和多種<b class='flag-5'>神經</b>網絡架構方法

    卷積神經網絡與傳統神經網絡的比較

    在深度學習領域,神經網絡模型被廣泛應用于各種任務,如圖像識別、自然語言處理和游戲智能等。其中,卷積神經網絡(CNNs)和傳統神經網絡是兩種常見的模型。 1. 結構差異 1.1 傳統神經
    的頭像 發表于 11-15 14:53 ?1878次閱讀

    RNN模型與傳統神經網絡的區別

    神經網絡是機器學習領域中的一種強大工具,它們能夠模擬人腦處理信息的方式。隨著技術的發展,神經網絡的類型也在不斷增加,其中循環神經網絡(RNN)和傳統神經網絡(如前饋
    的頭像 發表于 11-15 09:42 ?1133次閱讀

    LSTM神經網絡的結構與工作機制

    LSTM(Long Short-Term Memory,長短期記憶)神經網絡是一種特殊的循環神經網絡(RNN),設計用于解決長期依賴問題,特別是在處理時間序列數據時表現出色。以下是LSTM神經
    的頭像 發表于 11-13 10:05 ?1632次閱讀

    Moku人工神經網絡101

    Moku3.3版更新在Moku:Pro平臺新增了全新的儀器功能【神經網絡】,使用戶能夠在Moku設備上部署實時機器學習算法,進行快速、靈活的信號分析、去噪、傳感器調節校準、閉環反饋等應用。如果您
    的頭像 發表于 11-01 08:06 ?667次閱讀
    Moku人工<b class='flag-5'>神經</b>網絡101

    關于卷積神經網絡,這些概念你厘清了么~

    隨著人工智能(AI)技術的快速發展,AI可以越來越多地支持以前無法實現或者難以實現的應用。本文基于此解釋了 卷積神經網絡 (CNN)及其對人工智能和機器學習的意義。CNN是一種能夠從復雜數據中提
    發表于 10-24 13:56

    matlab 神經網絡 數學建模數值分析

    matlab神經網絡 數學建模數值分析 精通的可以討論下
    發表于 09-18 15:14
    主站蜘蛛池模板: 一级毛片免费全部播放 | 操人视频网站 | 天天干夜夜叭 | 婷婷亚洲五月 | 在线观看视频一区二区三区 | 五月婷婷丁香在线观看 | 色播亚洲 | 国产v精品成人免费视频400条 | 都市禁忌猎艳风流美妇 | 乱小说录目伦200篇将曲勒 | 在线天堂中文 | 国产h视频在线观看网站免费 | 免费观看成人欧美1314www | ggg成人 | 中文字幕日韩三级 | 三级不卡 | 欧美色淫| 色综合婷婷 | 欧美午夜小视频 | 高清性欧美xxx | 黄色网址你懂得 | 高黄视频 | 操操操综合网 | 末发育娇小性色xxxxx视频 | 毛片视频免费网站 | www.夜夜操| 天堂成人 | 欧美奇米 | 日本三级香港三级人妇99 | 激情开心婷婷 | 精品三级三级三级三级三级 | 欧美日韩伦理 | 国产在线播放你懂的 | 精品一区二区三区18 | 91pao强力打造免费高清 | 在线成人看片 | 欧美性色xo影院永久禁欲 | 国产伦精品一区二区三区四区 | 国产精品9999久久久久仙踪林 | 亚洲jizzjizz中国妇女 | 久草色香蕉 |