在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

清華大學(xué)提出了針對(duì)深度學(xué)習(xí)加速的FPGA虛擬化方案

YCqV_FPGA_EETre ? 來源:FPGA開發(fā)圈 ? 2020-04-30 16:19 ? 次閱讀

云計(jì)算已經(jīng)成為了一種新的計(jì)算范式。對(duì)于云計(jì)算而言,虛擬化是一項(xiàng)必不可少的技術(shù),通過將硬件資源虛擬化,我們可以實(shí)現(xiàn)用戶之間的隔離、系統(tǒng)的靈活可擴(kuò)展,提升安全性,使得硬件資源可被充分利用。

從2018年起,因?yàn)?a href="http://m.xsypw.cn/soft/data/30-91/" target="_blank">FPGA的高可編程性、低延遲、高能效等特點(diǎn),越來越多的云服務(wù)提供商,如Amazon、阿里云、微軟Azure,都開始在云端提供了Xilinx FPGA實(shí)例,邁入了云計(jì)算發(fā)展的重要一步。但到目前為止,F(xiàn)PGA云服務(wù)都還是以物理卡的形式、面向于單一的靜態(tài)任務(wù),還沒有很好的針對(duì)于云端FPGA虛擬化的解決方案。

為了解決這一問題,清華大學(xué)汪玉教授研究小組提出了針對(duì)深度學(xué)習(xí)加速的FPGA虛擬化方案,通過多核硬件資源池、基于分塊 (tilling) 的指令封裝、兩級(jí)靜態(tài)與動(dòng)態(tài)編譯的方式,來實(shí)現(xiàn)任務(wù)間的分離,同時(shí)保證快速的在線重編程;深度學(xué)習(xí)加速器的基礎(chǔ)設(shè)計(jì)則基于汪玉教授小組2017年的Angel-Eye工作。相關(guān)論文也將在5月初舉辦的FPGA領(lǐng)域頂級(jí)會(huì)議FCCM2020進(jìn)行在線報(bào)告。

如果想親手測(cè)試的小伙伴,也可以根據(jù)github中的說明,連接服務(wù)器進(jìn)行體驗(yàn):

https://github.com/annoysss123/FPGA-Virt-Exp-on-Aliyun-f3

總體介紹

如圖1 (a) 所示,云端的FPGA一般為VU9P等資源比較多的FPGA芯片,可以同時(shí)支持多路的計(jì)算,因而是可以虛擬化的。公有云的虛擬化一般采用物理資源隔離,或者性能隔離的方式給不同用戶分配計(jì)算資源,前者給不同用戶分配完全不同的計(jì)算資源,后者使用動(dòng)態(tài)重配置等方式使得多用戶與多任務(wù)的情況下總體性能最大化。本項(xiàng)研究中,作為對(duì)照的基本設(shè)計(jì),是在FPGA上部署一個(gè)大核,以時(shí)分復(fù)用 (TDM) 的方式讓多個(gè)用戶使用;而虛擬化設(shè)計(jì)則是選擇空分復(fù)用 (SDM) 的方式來共享同一塊FPGA的計(jì)算資源。

圖1:基于指令集的虛擬化方法:(a) 針對(duì)公有云的硬件架構(gòu);(b) 針對(duì)私有云的編譯器設(shè)計(jì)

而如圖1 (b) 所示,在私有云的情況下,我們希望使得系統(tǒng)總的性能最優(yōu)。如果FPGA允許多個(gè)用戶使用,在新的用戶申請(qǐng)資源后,系統(tǒng)需要給新用戶分配硬件資源——如果需要重新燒寫FPGA,或者重新編譯生成指令,則切換的時(shí)間成本很高。為了讓云端的虛擬化FPGA,可以更加靈活快速的支持動(dòng)態(tài)的深度學(xué)習(xí)推理應(yīng)用,本項(xiàng)虛擬化設(shè)計(jì)的編譯器上分為了靜態(tài)與動(dòng)態(tài)的兩個(gè)階段:首先在離線部署階段,先生成一些列指令的打包 (instruction frame package, IFP) ; 在運(yùn)行時(shí),則根據(jù)不同用戶硬件資源分配的需求,給不同的核分配IFP,來實(shí)現(xiàn)快速的在線重配置。在這種情況下,在線編譯器只需要處理較少的運(yùn)行時(shí)信息,可以將重配置的時(shí)間降低到1ms左右。

圖2. 基于FPGA的虛擬化深度學(xué)習(xí)加速器硬件架構(gòu)

硬件與編譯器設(shè)計(jì)

為了實(shí)現(xiàn)虛擬化方案,如圖2所示,在硬件方面也需要和傳統(tǒng)的深度學(xué)習(xí)加速器有很大的不同。為了能夠?qū)崿F(xiàn)FPGA的空分復(fù)用,該設(shè)計(jì)采用了多核資源池的設(shè)計(jì),每個(gè)用戶會(huì)被分配并且獨(dú)占一定數(shù)量的小計(jì)算核。傳統(tǒng)的指令分發(fā)模塊 (IDM) 只是用來實(shí)現(xiàn)單核的指令分發(fā)與依賴性管理,為了能支持虛擬化,需要將IDM分為兩級(jí):

第一級(jí)IDM包括Instr Mem, Instr Decoder,Content-Switch Controller, 以及Multi-Core Sync. Controller四個(gè)模塊。Instr Mem從DDR中取指并且緩存在片上,Instr decoder將指令分發(fā)到各個(gè)第二級(jí)IDM。Content-Switch Controller可以記錄當(dāng)前神經(jīng)網(wǎng)絡(luò)運(yùn)行到哪一層,可以在任務(wù)切換時(shí)讓計(jì)算核直接在已有的中間結(jié)果上運(yùn)算。而Multi-Core Sync. Controller則是產(chǎn)生同步信號(hào),讓同一個(gè)用戶分配的多個(gè)核的計(jì)算同步。

第二級(jí)IDM則負(fù)責(zé)每個(gè)核內(nèi)的計(jì)算調(diào)度,Context-SwitchController模塊根據(jù)上下文信息控制計(jì)算的重新開始,System Sync. Controller則在多核的計(jì)算同一個(gè)神經(jīng)網(wǎng)絡(luò)時(shí),獲取全局同步信號(hào),用來控制該計(jì)算核與其他核的計(jì)算是同步的。

圖3. 基于FPGA的虛擬化深度學(xué)習(xí)加速任務(wù)編譯流程,左為靜態(tài)編譯,右為動(dòng)態(tài)編譯

為了讓同一個(gè)神經(jīng)網(wǎng)絡(luò)可以動(dòng)態(tài)分配到不同計(jì)算核上計(jì)算,需要將總的計(jì)算任務(wù)切成塊(Tilling),這也是神經(jīng)網(wǎng)絡(luò)加速器設(shè)計(jì)中的一個(gè)重要思路。我們可以從多個(gè)不同維度去對(duì)神經(jīng)網(wǎng)絡(luò)進(jìn)行切塊,比如feature map的height維度,但是這會(huì)讓指令之間的依賴性更加復(fù)雜,因此,本項(xiàng)研究中選擇了feature map的width和outputchannel兩個(gè)維度去進(jìn)行切塊。

如圖3所示,左側(cè)就展示了,我們對(duì)于一個(gè)神經(jīng)網(wǎng)絡(luò)的第i層,在height和outputchannel兩個(gè)維度進(jìn)行切塊,每一塊的一系列指令封裝成一個(gè)IFP;經(jīng)過一個(gè)簡(jiǎn)單的latency simulator,可以得到每一塊的指令總執(zhí)行時(shí)間T_1到T_N (或T_M) 。Allocator模塊則會(huì)根據(jù)不同切塊的計(jì)算延時(shí),將計(jì)算任務(wù)均勻地分配到當(dāng)前用戶所有的多個(gè)計(jì)算核上,實(shí)現(xiàn)負(fù)載均衡,從而使得總體延遲最短。

實(shí)驗(yàn)結(jié)果

為了衡量本虛擬化方案的效果,研究小組分別使用了Xilinx Alveo U200板卡、Xilinx VU9P FPGA (阿里云上實(shí)例)、以及nVidia TeslaV100 GPU運(yùn)行Inception v3, VGG16, MobileNet, ResNet50等四種不同的神經(jīng)網(wǎng)絡(luò)作為測(cè)試。硬件資源使用情況如Table 1所示。

首先,我們需要衡量虛擬化方案帶來的額外編譯與任務(wù)切換的成本。如Table2所示,可以看到,靜態(tài)編譯大約耗費(fèi)14.7-46.8秒,而運(yùn)行時(shí)的動(dòng)態(tài)編譯大約耗時(shí)0.4-1.5ms。再加上下發(fā)指令文件到計(jì)算核并開始計(jì)算的時(shí)間,總體的動(dòng)態(tài)重構(gòu)成本在0.45-1.70ms,相對(duì)于靜態(tài)編譯可以忽略不計(jì),實(shí)時(shí)的切換成本很低。

一個(gè)好的虛擬化方案,應(yīng)該讓用戶獲得的性能和計(jì)算資源的多少成線性。一方面,我們希望不同用戶在分配到了同樣的計(jì)算資源,可以獲得同樣的計(jì)算性能。另一方面,我們希望同樣的用戶,在獲得更多的計(jì)算資源時(shí),獲得的性能能夠隨著計(jì)算資源數(shù)量線性增長(zhǎng)。

圖4.FPGA平臺(tái)與GPU平臺(tái)在不同神經(jīng)網(wǎng)絡(luò)下性能隔離與理想情況的偏離

假設(shè)有4個(gè)用戶,每個(gè)用戶在獲得25%,50%, 75%, 或者100%的計(jì)算資源情況下,我們希望性能與獲得資源的是成比例的。圖4展示了不同計(jì)算資源情況下,每個(gè)用戶獲得的計(jì)算性能相對(duì)于線性關(guān)系的偏離,如對(duì)于ResNet50,在分配50%計(jì)算資源的情況下,4個(gè)用戶在采用GPU虛擬化方案實(shí)際性能有10.3%的差異,而FPGA方案則只有0.1%的性能差異。可以看到,F(xiàn)PGA虛擬化方案的性能隔離明顯更好,同樣計(jì)算資源可以獲得一致的計(jì)算性能。

圖5. 在不同tilling策略下,計(jì)算性能隨著并行度的增長(zhǎng)情況

由于FPGA虛擬化方案是由多個(gè)小核實(shí)現(xiàn)的,我們也會(huì)關(guān)心性能是否隨著分配的計(jì)算核的數(shù)量可以線性增長(zhǎng)。圖5展示了使用FPGA虛擬化方案,在不同神經(jīng)網(wǎng)絡(luò)、在不同tilling策略下,隨著計(jì)算核數(shù)量增加的計(jì)算性能提升情況。紅線表示,如果直接使用一個(gè)大核,可以取得的性能,而“Multi-core-opt”表示從width和output channel兩個(gè)維度根據(jù)延遲進(jìn)行優(yōu)化選擇的策略。對(duì)于Inception v3和VGG16網(wǎng)絡(luò),多核的性能損失相對(duì)于單個(gè)大核只有 0.95%和3.93%;而對(duì)于MobileNet,多核性能則與單個(gè)大核性能有了31.64%的損失,主要原因是對(duì)于MobileNet,存儲(chǔ)帶寬影響更大,多核還是增加了帶寬需求。我們也可以發(fā)現(xiàn)在如VGG16這樣可并行程度較高的神經(jīng)網(wǎng)絡(luò)上,該方案取得了良好的線性度。而對(duì)于Inceptionv3以及MobileNet這樣瓶頸主要在存儲(chǔ)帶寬的情況,哪怕是單個(gè)大核的情況,相對(duì)于純線性增加,性能還是會(huì)有一定的損失,原因也是存儲(chǔ)帶寬的限制。

圖6. 不同方案在多任務(wù)情況下的總吞吐量

最后,研究也測(cè)試了多用戶、多任務(wù)的情況,性能以整個(gè)芯片總的throughput來衡量。如圖6所示,從淺到深的柱狀圖分別代表虛擬化方案、計(jì)算核為單獨(dú)任務(wù)優(yōu)化的虛擬化方案、每個(gè)任務(wù)單獨(dú)一個(gè)計(jì)算核、整芯片部署一個(gè)大核四種情況,在同時(shí)支持不同數(shù)量任務(wù)下的總性能。FPGA上共部署了16個(gè)計(jì)算核、因而可以支持最多16個(gè)任務(wù)同時(shí)運(yùn)行。可以看到,在任務(wù)不多的時(shí)候 (1,2,4個(gè)) ,每個(gè)任務(wù)單獨(dú)一個(gè)計(jì)算核沒辦法充分利用總的計(jì)算資源,因而總的性能較弱,而虛擬化方案可以實(shí)現(xiàn)好得多的性能,在任務(wù)數(shù)多起來以后,單個(gè)大核因?yàn)橥瑫r(shí)只能運(yùn)行一個(gè)任務(wù),總的性能得不到提升。而兩種虛擬化方案,隨著總?cè)蝿?wù)數(shù)的提升,性能在穩(wěn)步提升,在同時(shí)運(yùn)行16個(gè)任務(wù)時(shí),性能與每個(gè)core支持一個(gè)任務(wù)相同,都達(dá)到芯片的最大吞吐。

可以看到,該項(xiàng)研究提出的虛擬化方案,在性能隔離、性能scalability、多任務(wù)擴(kuò)展等情況都有不錯(cuò)的表現(xiàn),任務(wù)切換成本只有大約1ms的情況,單任務(wù)的性能損失在1%-4%左右,多任務(wù)的情況相對(duì)于靜態(tài)的單核方案與靜態(tài)的多核方案,分別可以實(shí)現(xiàn)1.07-1.69倍與1.88-3.12倍的性能提升。該篇論文也已經(jīng)刊登在在arxiv平臺(tái):https://arxiv.org/abs/2003.12101,歡迎感興趣的讀者點(diǎn)擊“查看原文”下載

在未來,Xilinx技術(shù)社區(qū)也將帶來更多最新的FPGA領(lǐng)域的研究進(jìn)展。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • FPGA
    +關(guān)注

    關(guān)注

    1634

    文章

    21818

    瀏覽量

    607235
  • 封裝
    +關(guān)注

    關(guān)注

    127

    文章

    8078

    瀏覽量

    143653
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5523

    瀏覽量

    121733

原文標(biāo)題:搶先目睹 | 清華大學(xué)汪玉團(tuán)隊(duì)FCCM20最新研究解析

文章出處:【微信號(hào):FPGA-EETrend,微信公眾號(hào):FPGA開發(fā)圈】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    清華大學(xué)鯤鵬昇騰科教創(chuàng)新卓越中心專項(xiàng)合作啟動(dòng),引領(lǐng)高校科研和人才培養(yǎng)新模式

    2月13日,清華大學(xué)與華為技術(shù)有限公司在清華大學(xué)自強(qiáng)科技樓簽署合作協(xié)議,宣布“清華大學(xué)鯤鵬昇騰科教創(chuàng)新卓越中心專項(xiàng)合作”(以下簡(jiǎn)稱“卓越中心”)正式啟動(dòng)。清華大學(xué)副校長(zhǎng)曾嶸,中國(guó)工程院
    的頭像 發(fā)表于 02-18 16:46 ?139次閱讀

    清華大學(xué)與華為啟動(dòng)“卓越中心”專項(xiàng)合作

    近日,清華大學(xué)與華為技術(shù)有限公司在清華大學(xué)自強(qiáng)科技樓正式簽署合作協(xié)議,共同宣布“清華大學(xué)鯤鵬昇騰科教創(chuàng)新卓越中心專項(xiàng)合作”(簡(jiǎn)稱“卓越中心”)正式啟動(dòng)。 出席簽約儀式的有清華大學(xué)副校長(zhǎng)
    的頭像 發(fā)表于 02-18 14:11 ?179次閱讀

    清華大學(xué)自動(dòng)系學(xué)子走進(jìn)華礪智行研學(xué)交流

    近日,清華大學(xué)自動(dòng)系的11名學(xué)子走進(jìn)華礪智行研學(xué)交流,開展科技前沿探索的社會(huì)實(shí)踐活動(dòng)。
    的頭像 發(fā)表于 02-13 10:03 ?142次閱讀

    清華大學(xué)DeepSeek指南:從入門到精通

    本資料由清華大學(xué)新聞與傳播學(xué)院新媒體研究中心元宇宙文化實(shí)驗(yàn)室余夢(mèng)瓏博士后團(tuán)隊(duì)出品,細(xì)致講述了DeepSeek的應(yīng)用技巧。 ? ? ? ? ? ? ? ? ? ?
    的頭像 發(fā)表于 02-11 09:16 ?1.2w次閱讀
    <b class='flag-5'>清華大學(xué)</b>DeepSeek指南:從入門到精通

    理想汽車與清華大學(xué)深化智能汽車領(lǐng)域合作

    近日,中國(guó)工程院院士、清華大學(xué)車輛與運(yùn)載學(xué)院教授、智能綠色車輛與交通全國(guó)重點(diǎn)實(shí)驗(yàn)室主任、國(guó)家工信部智能網(wǎng)聯(lián)汽車推進(jìn)專家組組長(zhǎng)李克強(qiáng)蒞臨理想汽車研發(fā)總部,雙方共同開啟了智能汽車智能技術(shù)研發(fā)領(lǐng)域的深度
    的頭像 發(fā)表于 01-09 16:58 ?422次閱讀

    美光科技一行走進(jìn)清華大學(xué)電子工程系

    為進(jìn)一步助力專業(yè)科技人才的培養(yǎng),美光作為創(chuàng)新內(nèi)存和存儲(chǔ)解決方案領(lǐng)域的全球領(lǐng)軍者,受邀在中國(guó)頂尖學(xué)府開設(shè) “美光課堂”。該課堂致力于為學(xué)生提供一個(gè)接觸行業(yè)前沿,感受企業(yè)文化,深度學(xué)習(xí)的平臺(tái)。直至
    的頭像 發(fā)表于 01-09 15:31 ?293次閱讀

    清華大學(xué)師生到訪智行者科技交流學(xué)習(xí)

    近日,清華大學(xué) “技術(shù)創(chuàng)新原理與實(shí)踐” 研究生課程師生一行到訪智行者進(jìn)行交流學(xué)習(xí)。作為課程實(shí)踐環(huán)節(jié)的重要一站,此次來訪開啟了一場(chǎng)深度的參觀學(xué)習(xí)之旅。智行者董事長(zhǎng)&CEO張德兆先生作為
    的頭像 發(fā)表于 12-23 11:39 ?459次閱讀

    博世與清華大學(xué)續(xù)簽人工智能研究合作協(xié)議

    近日,博世與清華大學(xué)宣布,雙方續(xù)簽人工智能領(lǐng)域的研究合作協(xié)議,為期五年。在此期間,博世將投入5000萬元人民幣。基于2020年成立的清華大學(xué)—博世機(jī)器學(xué)習(xí)聯(lián)合研究中心(以下簡(jiǎn)稱“聯(lián)合研究中心”),博世和
    的頭像 發(fā)表于 11-20 11:37 ?462次閱讀

    英諾達(dá)與清華大學(xué)攜手,共促國(guó)產(chǎn)EDA進(jìn)步

    10月30日,英諾達(dá)官方微信發(fā)布消息稱,英諾達(dá)與清華大學(xué)近期展開合作,共同深化產(chǎn)學(xué)研融合。此次合作聚焦于集成電路低功耗設(shè)計(jì)領(lǐng)域,英諾達(dá)團(tuán)隊(duì)走進(jìn)清華大學(xué)集成電路學(xué)院,為師生們帶來了專題授課及深入交流。
    的頭像 發(fā)表于 10-31 14:15 ?638次閱讀

    FPGA加速深度學(xué)習(xí)模型的案例

    FPGA(現(xiàn)場(chǎng)可編程門陣列)加速深度學(xué)習(xí)模型是當(dāng)前硬件加速領(lǐng)域的一個(gè)熱門研究方向。以下是一些FPGA
    的頭像 發(fā)表于 10-25 09:22 ?506次閱讀

    FPGA深度學(xué)習(xí)能走多遠(yuǎn)?

    支持不同的數(shù)據(jù)精度、量化和激活函數(shù)等。這種靈活性使其能夠適應(yīng)各種深度學(xué)習(xí)任務(wù),為不同的應(yīng)用場(chǎng)景提供定制的解決方案。 ? 低功耗:FPGA
    發(fā)表于 09-27 20:53

    熱烈歡迎清華大學(xué)電子工程系學(xué)子來武漢六博光電交流實(shí)踐!

    近日,武漢六博光電技術(shù)有限責(zé)任公司接到清華大學(xué)函件,正式成為清華大學(xué)電子工程系武漢實(shí)踐基地之一。2024年8月1日上午,清華大學(xué)電子工程系實(shí)踐團(tuán)隊(duì)一行共計(jì)13名學(xué)子前往武漢六博光電有限責(zé)任公司交流
    的頭像 發(fā)表于 08-02 08:37 ?597次閱讀
    熱烈歡迎<b class='flag-5'>清華大學(xué)</b>電子工程系學(xué)子來武漢六博光電交流實(shí)踐!

    清華大學(xué)研發(fā)新型仿生三維電子皮膚系統(tǒng)

    在科技日新月異的今天,清華大學(xué)再次引領(lǐng)了科研的潮流。6月5日,從清華大學(xué)傳來喜訊,該校航天航空學(xué)院與柔性電子技術(shù)實(shí)驗(yàn)室的張一慧教授團(tuán)隊(duì),成功研制出了一款具有仿生三維架構(gòu)的新型電子皮膚系統(tǒng)。這一突破性的科研成果不僅代表了電子皮膚領(lǐng)
    的頭像 發(fā)表于 06-06 16:37 ?574次閱讀

    清華大學(xué)創(chuàng)新領(lǐng)軍工程博士團(tuán)訪問摩爾線程

    5月19日,“清華大學(xué)創(chuàng)新領(lǐng)軍工程博士代表團(tuán)走進(jìn)摩爾線程”活動(dòng)順利舉辦。近五十位來自集成電路、能源、航天、通信等重要領(lǐng)域的清華大學(xué)工程博士參加了本次活動(dòng)。
    的頭像 發(fā)表于 05-20 15:28 ?530次閱讀

    清華大學(xué)研發(fā)成功大規(guī)模干涉-衍射異構(gòu)集成芯片——太極

    4月12日公布,清華大學(xué)研發(fā)出太極芯片,實(shí)現(xiàn)了每瓦160TOPS的高性能通用智能計(jì)算,這是該校電子工程系與自動(dòng)系共同攻克的難題。
    的頭像 發(fā)表于 04-12 15:50 ?550次閱讀
    主站蜘蛛池模板: 国产成人精品曰本亚洲78 | 成人免费视频一区 | 国产亚洲人成a在线v网站 | 日本三级s级在线播放 | 成人在线一区二区三区 | www深夜视频在线观看高清 | 中文字幕人成不卡一区 | 三级高清| 天天操天天看 | 日本一本一道久久香蕉免费 | 你懂的在线视频播放 | 亚洲免费观看在线视频 | 精品久久免费观看 | 精品国产自在在线在线观看 | 国产 麻豆 欧美亚洲综合久久 | 天天摸天天做天天爽在线 | 日韩三级毛片 | 色天天干 | 欧美特黄一免在线观看 | 国产高清在线看 | 色妞妞网 | 亚洲高清不卡视频 | 最新国产精品视频免费看 | 老师别揉我胸啊嗯上课呢视频 | 免费黄色一级毛片 | 欧美在线1| 久久久免费观看 | 国产男人女人做性全过程视频 | 国产精品免费久久久免费 | 樱桃磁力bt天堂 | 亚洲综合图片人成综合网 | 在线 你懂 | 黄色网络在线观看 | 同性同男小说肉黄 | 18女人毛片水真多免费 | 天天干天天夜 | 成人黄色在线网站 | 午夜高清免费在线观看 | 日韩一级在线视频 | 手机免费黄色网址 | 四虎影院一区二区 |