在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

蘋果A系列SoC可作為新的AI算力范式,成為新的摩爾定律

454398 ? 來源:機器之心 ? 作者: 半導體行業觀察 ? 2020-10-28 11:54 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

最近蘋果在發布會上公開了新的A14 SoC。根據發布會,該SoC將用于新的iPad上,而根據行業人士的推測該SoC也將會用在新的iPhone系列中。除了常規的CPUGPU升級之外,A14最引人注目的就是Neural Engine的算力提升。我們認為,蘋果A系列SoC在近幾年內Neural Engine的算力增長可以作為一種新的AI算力范式,成為新的摩爾定律。

A14上的新Neural Engine

蘋果公布的A14 SoC使用5nm工藝,而新的Neural Engine則使用16核心設計,其峰值算力可達11 TOPS,遠超上一代的Neural Engine(6TOPS)。在發布會上,蘋果明確表示該Neural Engine主要支持加速矩陣相乘。此外,蘋果還表示新的Neural Engine結合CPU上的機器學習加速,可以將實際的AI應用體驗相對于前代提升十倍。

新的Neural Engine的峰值算力大大提升可以說是有些意料之外,但是又是情理之中。意料之外是因為A14的其它關鍵指標,例如CPU和GPU等相對于前一代A13的提升并不多(發布會上給出的30%提升對比的是再前一代的A12 SoC,如果直接和上一代A13相比則CPU性能提升是16%而GPU則是10%左右),但是Neural Engine的性能提升則接近100%。而Neural Engine性能提升大大超過SoC其他部分是情理之中則是因為我們認為如果仔細分析SoC性能提升背后的推動力,則可以得出Neural Engine性能大幅提升是非常合理的。一方面,從應用需求側來說,對應CPU和GPU的相關應用,例如游戲、網頁瀏覽、視頻等在未來可預見的幾年內都沒有快速的需求增長,唯有人工智能有這樣的需求。另一方面,CPU和GPU的性能在給定架構下的性能提升也較困難,很大一部分提升必須靠半導體工藝,而事實上半導體工藝的升級在未來幾年內可預期將會越來越慢,每代工藝升級更注重于晶體管密度以及功耗,在晶體管性能方面的提升將越來越小。而AI加速器則還有相當大的設計提升空間,相信在未來幾年仍將會有算力快速增長。

Neural Engine算力增長趨勢

我們不妨回顧一下過去幾代A系列SoC中Neural Engine的算力增長。

最早加入Neural Engine的SoC是2017年發布的A11。該SoC使用10nm工藝,搭載第一代Neural Engine峰值算力為0.6TOPS,Neural Engine的芯片面積為1.83mm2。當時Neural Engine主要針對的應用是iPhone新推出的人臉識別鎖屏FaceID以及人臉關鍵點追蹤Animoji,且Neural Engine的算力并不對第三方應用開放。

第二代Neural Engine則是在2018年的A12 SoC上。該SoC使用7nm工藝,Neural Engine面積為5.8mm2,而其峰值算力則達到了5TOPS,相比前一代的Neural Engine翻了近10倍。而根據7nm和10nm工藝的晶體管密度折算則可以估計出Neural Engine的晶體管數量大約也是增加了6-7倍,基本和算力提升接近。

第三代Neural Engine是2019年的A13,使用第二代N7工藝,其面積相比上一代減少到了4.64mm2,而算力則增加到了6TOPS。我們認為這一代的Neural Engine是上一代的小幅改良版本,并沒有做大幅升級。

最近公布的A14則搭載了最新一代的Neural Engine,使用5nm工藝,Neural Engine的具體面積尚沒有具體數字,但是其算力則是達到了11TOPS,是上一代的接近兩倍。

從上面的分析可以看出Neural Engine每次主要升級都伴隨著算力的大幅上升,第一次上升了近十倍,而第二次則上升了近兩倍。如果按照目前兩年一次主要升級的節奏,我們認為在未來數年內Neural Engine乃至于廣義的AI芯片市場都會有每兩年性能提升兩倍的規律,類似半導體的摩爾定律。我們認為,這樣的規律可以認為是AI芯片算力的新摩爾定律。

為什么AI芯片算力增長會成為新的摩爾定律

AI芯片算力指數上升的主要驅動力還是主流應用對于AI的越來越倚重,以及AI神經網絡模型對于算力需求的快速提升。

應用側對于AI的需求正在越來越強。就拿智能設備為例,2017年蘋果A11中AI的主要應用還是面部關鍵點識別和追蹤,而到了2018年開始越來越多的應用開始使用AI,包括圖像增強、拍攝虛化效果等,在下一代智能設備中AI則更加普及,首先從人機交互來看,下一代智能設備中常見的人機交互方式手勢追蹤、眼動追蹤、語音輸入等都需要AI,這就大大增加了AI算法的運行頻率以及算力需求。此外,下一代智能設備中有可能會用到的一系列新應用都倚重AI,包括游戲、增強現實等應用中,都需要運行大量的AI模型例如SLAM,關鍵點識別、物體檢測和追蹤、姿勢識別和追蹤等等。

另一方面,AI對于算力的需求也在快速提升。根據HOT CHIPS 2020上的特邀演講,AI模型每年對于算力需求的提升在10倍左右,因此可以說AI模型對于硬件加速的需求非常強。

如果我們從另一個角度考慮,這其實就意味著AI加速芯片的算力提升在賦能新的場景和應用——因為總是有新的性能更高的AI模型需要更強的硬件去支持,而一旦支持了這樣的新模型則又能賦能新的應用。從目前主流的計算機視覺相關的AI,到以BERT為代表的大規模自然語言處理算法,以及未來可能出現的將BERT和計算機視覺相結合的視覺高階語義理解等等,我們在未來幾年內尚未看到AI模型進步的停止以及可能的新應用場景的出現,相反目前的瓶頸是AI加速硬件性能跟不上。這也就意味著,AI加速硬件才是AI模型落地的最終賦能者,這就像當年摩爾定律大躍進的PC時代,當時每一次CPU處理器的進步都意味著PC上能運行更多的應用,因此我們看到了CPU性能在當時的突飛猛進;今天這一幕又重現了,只是今天的主角換成了AI加速芯片。

AI算力增長來自何方?

分析完了AI加速芯片的需求側,我們不妨再來看看供給側——即目前的技術還能支持AI芯片多少算力提升。

首先,AI加速器芯片和傳統CPU的一個核心差異在于,CPU要處理的通用程序中往往很大一部分難以并行化,因此即使增加CPU的核心數量,其性能的增加與核心數也并非線性關系;而AI模型的計算通常較為規整,且很容易就可以做并行化處理,因此其算力提升往往與計算單元數量呈接近線性的關系。這在我們之前對比A11和A12 Neural Engine的晶體管數量和算力提升之間的關系也有類似的結論。目前,以Neural Engine為代表的AI加速器占芯片總面積約為5%,未來如果AI加速器的面積能和GPU有類似的面積(20%左右),則AI加速器的計算單元數量也即算力至少還有4倍的提升空間。此外,如果考慮兩年兩倍的節奏并考慮未來幾年內可能會落地的3nm工藝,則我們認為AI加速器算力兩年兩倍的提升速度從這方面至少還有5-6年的空間可挖。

除了單純增加計算單元數目之外,另一個AI加速器算力重要的提升空間來自于算法和芯片的協同設計。從算法層面,目前主流的移動端模型使用的是8-bit計算精度,而在學術界已經有許多對于4-bit甚至1-bit計算的研究都取得了大幅降低計算量和參數量的同時幾乎不降低模型精度。另外,模型的稀疏化處理也是一個重要的方向,目前許多模型經過稀疏化處理可以降低50-70%的等效計算量而不降低精度。因此如果考慮模型和芯片和協同設計并在加速器中加入相關的支持(如低精度計算和稀疏化計算),我們預計還能在計算單元之外額外帶來至少10倍等效算力提升。

最后,當峰值算力的潛力已經被充分挖掘之后,還有一個潛力方向是針對不同AI模型的專用化設計,也即異構設計。AI模型中,常用于機器視覺的卷積神經網絡和常用于機器翻譯/語音識別的循環卷積網絡無論是在計算方法還是內存訪問等方面都大相徑庭,因此如果能做專用化設計,則有可能在峰值算力不變的情況下,實際的計算速度仍然取得數倍的提升。

結合上面討論的一些方向,我們認為AI加速芯片的算力在未來至少還有數十倍甚至上百倍的提升空間,再結合之前討論的應用側對于算力的強烈需求,我們認為在未來數年內都會看到AI加速芯片的算力一兩年翻倍地指數上升。在這一領域,事實上中國的半導體行業有很大的機會。如前所述,AI芯片性能提升主要來自于設計的提升而非工藝提升,而中國無論是在半導體電路設計領域還是AI模型領域都并不落后,因此有機會能抓住這個機會。
編輯;hfy

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • cpu
    cpu
    +關注

    關注

    68

    文章

    11059

    瀏覽量

    216423
  • gpu
    gpu
    +關注

    關注

    28

    文章

    4925

    瀏覽量

    130878
  • 5nm
    5nm
    +關注

    關注

    1

    文章

    342

    瀏覽量

    26337
  • A14處理器
    +關注

    關注

    0

    文章

    15

    瀏覽量

    2167
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    奇異摩爾邀您相約2025中國AI大會

    在2025中國AI大會上,奇異摩爾首席網絡架構專家葉棟將帶來“AI原生時代 —共筑超節點的網絡基礎架構”的主題演講,分享國內外超節點解決
    的頭像 發表于 06-17 17:49 ?522次閱讀

    摩爾線程與AI平臺AutoDL達成深度合作

    近日,摩爾線程與國內領先的AI平臺AutoDL宣布達成深度合作,雙方聯合推出面向個人開發者的“摩爾線程專區”,首次將國產GPU
    的頭像 發表于 05-23 16:10 ?615次閱讀

    電力電子中的“摩爾定律”(1)

    本文是第二屆電力電子科普征文大賽的獲獎作品,來自上??萍即髮W劉賾源的投稿。著名的摩爾定律中指出,集成電路每過一定時間就會性能翻倍,成本減半。那么電力電子當中是否也存在著摩爾定律呢?1965年,英特爾
    的頭像 發表于 05-10 08:32 ?185次閱讀
    電力電子中的“<b class='flag-5'>摩爾定律</b>”(1)

    DeepSeek推動AI需求:800G光模塊的關鍵作用

    集群的部署過程中,帶寬瓶頸成為制約發揮的關鍵因素,而光模塊的速率躍升成為突破這一瓶頸的核心驅動力。 光模塊速率躍升 隨著
    發表于 03-25 12:00

    瑞沃微先進封裝:突破摩爾定律枷鎖,助力半導體新飛躍

    在半導體行業的發展歷程中,技術創新始終是推動行業前進的核心動力。深圳瑞沃微半導體憑借其先進封裝技術,用強大的實力和創新理念,立志將半導體行業邁向新的高度。 回溯半導體行業的發展軌跡,摩爾定律無疑是一個重要的里程碑
    的頭像 發表于 03-17 11:33 ?375次閱讀
    瑞沃微先進封裝:突破<b class='flag-5'>摩爾定律</b>枷鎖,助力半導體新飛躍

    混合鍵合中的銅連接:或成摩爾定律救星

    混合鍵合3D芯片技術將拯救摩爾定律。 為了繼續縮小電路尺寸,芯片制造商正在爭奪每一納米的空間。但在未來5年里,一項涉及幾百乃至幾千納米的更大尺度的技術可能同樣重要。 這項技術被稱為“混合鍵合”,可以
    的頭像 發表于 02-09 09:21 ?562次閱讀
    混合鍵合中的銅連接:或成<b class='flag-5'>摩爾定律</b>救星

    石墨烯互連技術:延續摩爾定律的新希望

    半導體行業長期秉持的摩爾定律(該定律規定芯片上的晶體管密度大約每兩年應翻一番)越來越難以維持。縮小晶體管及其間互連的能力正遭遇一些基本的物理限制。特別是,當銅互連按比例縮小時,其電阻率急劇上升,這會
    的頭像 發表于 01-09 11:34 ?526次閱讀

    摩爾定律是什么 影響了我們哪些方面

    摩爾定律是由英特爾公司創始人戈登·摩爾提出的,它揭示了集成電路上可容納的晶體管數量大約每18-24個月增加一倍的趨勢。該定律不僅推動了計算機硬件的快速發展,也對多個領域產生了深遠影響。
    的頭像 發表于 01-07 18:31 ?1247次閱讀

    摩爾定律時代,提升集成芯片系統化能力的有效途徑有哪些?

    電子發燒友網報道(文/吳子鵬)當前,終端市場需求呈現多元化、智能化的發展趨勢,芯片制造則已經進入后摩爾定律時代,這就導致先進的工藝制程雖仍然是芯片性能提升的重要手段,但效果已經不如從前,先進封裝
    的頭像 發表于 12-03 00:13 ?3061次閱讀

    企業AI租賃是什么

    企業AI租賃是指企業通過互聯網向專業的提供商租用所需的計算資源,以滿足其AI應用的需求。
    的頭像 發表于 11-14 09:30 ?2369次閱讀

    GPU開發平臺是什么

    隨著AI技術的廣泛應用,需求呈現出爆發式增長。AI租賃
    的頭像 發表于 10-31 10:31 ?621次閱讀

    AI芯片供電電源測試利器:費思低壓大電流系列電子負載

    AI芯片作為驅動復雜計算任務的核心引擎,其性能與穩定性成為了決定應用成敗的關鍵因素。而在這背后,供電電源的穩定性和高效性則是保障
    的頭像 發表于 10-25 11:26 ?1361次閱讀
    <b class='flag-5'>AI</b><b class='flag-5'>算</b><b class='flag-5'>力</b>芯片供電電源測試利器:費思低壓大電流<b class='flag-5'>系列</b>電子負載

    AI芯片主張“超越摩爾”,Chiplet與先進封裝技術迎百家爭鳴時代

    越來越差。在這種情況下,超越摩爾逐漸成為打造高芯片的主流技術。 ? 超越摩爾是后摩爾定律時代
    的頭像 發表于 09-04 01:16 ?4089次閱讀
    高<b class='flag-5'>算</b><b class='flag-5'>力</b><b class='flag-5'>AI</b>芯片主張“超越<b class='flag-5'>摩爾</b>”,Chiplet與先進封裝技術迎百家爭鳴時代

    “自我實現的預言”摩爾定律,如何繼續引領創新

    59年前,1965年4月19日,英特爾公司聯合創始人戈登·摩爾(Gordon Moore)應邀在《電子》雜志上發表了一篇四頁短文,提出了我們今天熟知的摩爾定律(Moore’s Law)。 就像你為
    的頭像 發表于 07-05 15:02 ?496次閱讀
    主站蜘蛛池模板: 黄视频免费 | 国产精品三级视频 | 第四色亚洲色图 | 爆操极品美女 | 久久天天躁狠狠躁夜夜爽 | 多男一女一级淫片免费播放口 | 色香婷婷 | 国产3p在线播放 | 亚洲一区免费在线 | 欧美成人久久 | 49pao强力免费打造在线高清 | 午夜黄大色黄大片美女图片 | 免费h网站在线观看 | 黄视频网站在线观看 | 久久香蕉国产线看观看精品yw | 午夜毛片免费观看视频 | 天天爱天天干天天操 | 亚洲综合欧美日本另类激情 | 欧美在线播放 | 男女视频在线播放 | 性欧美xxx 不卡视频 | 成人免费黄色网 | 亚州视频一区二区 | 国产卡1卡2卡三卡网站免费 | 欧美成人三级网站 | you ji z z日本人在线观看 | 干夜夜| 一级做a爰片久久毛片人呢 一级做a爰片久久毛片图片 | 五月天激激婷婷大综合丁香 | 免费观看高清视频 | 欧美午夜场| 午夜影皖普通区 | caoporn成人免费公开 | 黄页网站在线播放 | 婷婷激情四月 | vr亚洲成年网址在线观看 | 大胆国模一区二区三区伊人 | 一区二区三区四区在线视频 | 韩国三级在线不卡播放 | 国产乱码免费卡1卡二卡3卡四 | 欧美成人区 |