在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

SiC如何實現比硅更好的熱管理?SiC在電子領域有哪些應用?

電子設計 ? 來源:powerelectronicsnews ? 作者:Stefano Lovati ? 2021-03-18 14:51 ? 次閱讀

碳化硅(SiC)是由硅(Si)和碳(C)組成的半導體化合物,屬于寬帶隙(WBG)系列材料。它的物理鍵非常牢固,使半導體具有很高的機械,化學和熱穩定性。寬帶隙和高熱穩定性使SiC器件可以在比硅更高的結溫下使用,甚至超過200°C。碳化硅在電力應用中提供的主要優勢是其低漂移區電阻,這是高壓電力設備的關鍵因素。

憑借出色的物理和電子特性的結合,基于SiC的功率器件正在推動功率電子學的根本變革。盡管這種材料已為人們所知很長時間,但由于可提供大而高質量的晶片,在很大程度上將其用作半導體是相對較新的。近幾十年來,努力集中在開發特定且獨特的高溫晶體生長工藝上。盡管SiC具有不同的多晶型晶體結構(也稱為多型晶體),但4H-SiC多型六方晶體結構最適合于高功率應用。六英寸的SiC晶圓如圖1所示。

圖1:6英寸SiC晶片(來源:ST)

1. SiC的主要特性是什么?

硅與碳的結合為這種材料提供了出色的機械,化學和熱學性能,包括:

  • 高導熱率
  • 低熱膨脹性和優異的抗熱震性
  • 低功耗和開關損耗
  • 高能源效率
  • 高工作頻率和溫度(在最高200°C的結溫下工作)
  • 小芯片尺寸(具有相同的擊穿電壓)
  • 本征二極管MOSFET器件)
  • 出色的熱管理,降低了冷卻要求
  • 壽命長

2. SiC在電子領域有哪些應用?

碳化硅是一種非常適合于電源應用的半導體,這首先要歸功于其承受高壓的能力,該能力是硅所能承受的高壓的十倍之多。基于碳化硅的半導體具有更高的熱導率,更高的電子遷移率和更低的功率損耗。SiC二極管和晶體管還可以在更高的頻率和溫度下工作,而不會影響可靠性。SiC器件(例如肖特基二極管和FET / MOSFET晶體管)的主要應用包括轉換器逆變器,電源,電池充電器和電機控制系統。

3.為什么在功率應用中SiC能夠勝過Si?

盡管硅是電子領域中使用最廣泛的半導體,但硅開始顯示出一些局限性,尤其是在大功率應用中。這些應用中的一個相關因素是半導體提供的帶隙或能隙。當帶隙較高時,它使用的電子設備可以更小,運行更快,更可靠。它也可以在比其他半導體更高的溫度,電壓和頻率下工作。硅的帶隙約為1.12eV,而碳化硅的帶隙約為3.26eV,幾乎是其三倍。

4.為什么SiC可以承受如此高的電壓?

功率器件,尤其是MOSFET,必須能夠承受極高的電壓。由于電場的介電擊穿強度大約是硅的十倍,所以SiC可以達到非常高的擊穿電壓,從600V到幾千伏。SiC可以使用比硅更高的摻雜濃度,并且可以使漂移層非常薄。漂移層越薄,其電阻越低。理論上,給定高電壓,可以將漂移層的每單位面積的電阻減小到硅電阻的1/300。

5.為什么碳化硅在高頻下可以勝過IGBT

在大功率應用中,過去主要使用IGBT和雙極晶體管,目的是降低在高擊穿電壓下出現的導通電阻。但是,這些器件具有很大的開關損耗,從而導致產生熱量的問題,從而限制了它們在高頻下的使用。使用SiC,可以制造諸如肖特基勢壘二極管和MOSFET的器件,這些器件可實現高電壓,低導通電阻和快速操作。

6.哪些雜質用于摻雜SiC材料?

在其純凈形式中,碳化硅的行為就像電絕緣體。通過控制雜質或摻雜劑的添加,SiC可以表現得像半導體。P型半導體可以通過用鋁,硼或鎵摻雜而獲得,而氮和磷的雜質會產生N型半導體。基于諸如紅外線輻射的電壓或強度,可見光和紫外線的因素,碳化硅具有在某些條件下而不在其他條件下導電的能力。與其他材料不同,碳化硅能夠在很寬的范圍內控制器件制造所需的P型和N型區域。由于這些原因,SiC是一種適用于功率器件的材料,并且能夠克服硅提供的限制。

7. SiC如何實現比硅更好的熱管理?

另一個重要參數是導熱系數,它是半導體如何消散其產生的熱量的指標。如果半導體不能有效地散熱,則會對器件可以承受的最大工作電壓和溫度產生限制。這是碳化硅優于硅的另一個領域:碳化硅的導熱系數為1490 W / mK,而硅的導熱系數為150 W / mK。

8.與Si-MOSFET相比,SiC反向恢復時間如何?

SiC MOSFET和硅MOSFET一樣,都有一個內部二極管。體二極管提供的主要限制之一是不希望的反向恢復行為,當二極管在承載正向正向電流時關閉時,就會發生反向恢復行為。因此,反向恢復時間(trr)成為定義MOSFET特性的重要指標。圖2顯示了1000V Si基MOSFET和SiC基MOSFET的trr之間的比較。可以看出,SiC MOSFET的體二極管非常快:trr和Irr的值很小,可以忽略不計,并且能量損失Err大大降低了。

pIYBAGBS946AagtIAAJ7wEEohAU816.png

圖2:反向恢復時間比較(來源:ROHM)

9.為什么軟關斷對于短路保護很重要?

SiC MOSFET的另一個重要參數是短路耐受時間(SCWT)。由于SiC MOSFET占據芯片的很小區域并具有高電流密度,因此它們承受可能導致熱破壞的短路的能力往往低于硅基器件。例如,在采用TO247封裝的1.2kV MOSFET的情況下,Vdd = 700V和Vgs = 18V時的短路耐受時間約為8-10μs。隨著Vgs的減小,飽和電流減小,并且耐受時間增加。隨著Vdd的降低,產生的熱量更少,并且承受時間更長。由于關斷SiC MOSFET所需的時間非常短,因此,當關斷速率Vgs高時,高dI / dt可能會導致嚴重的電壓尖峰。因此,應使用軟關斷來逐漸降低柵極電壓,避免出現過電壓峰值。

10.為什么隔離式柵極驅動器是更好的選擇?

許多電子設備都是低壓電路和高壓電路,它們彼此互連以執行控制和電源功能。例如,牽引逆變器通常包括低壓初級側(電源,通信控制電路)和次級側(高壓電路,電動機,功率級和輔助電路)。位于初級側的控制器通常使用來自高壓側的反饋信號,如果沒有隔離柵,則很容易受到損壞。隔離柵將電路從初級側到次級側電氣隔離,從而形成獨立的接地基準,從而實現了所謂的電流隔離。這樣可以防止有害的交流或直流信號從一側傳遞到另一側,從而損壞功率組件。

編輯:hfy

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • MOSFET
    +關注

    關注

    150

    文章

    8341

    瀏覽量

    218821
  • 功率器件
    +關注

    關注

    42

    文章

    1919

    瀏覽量

    92260
  • SiC
    SiC
    +關注

    關注

    31

    文章

    3171

    瀏覽量

    64530
  • 碳化硅
    +關注

    關注

    25

    文章

    3034

    瀏覽量

    50117
收藏 人收藏

    評論

    相關推薦
    熱點推薦

    基時代的黃昏:為何SiC MOSFET全面淘汰IGBT?

    革命性替代:為何SiC MOSFET全面淘汰IGBT? —— 當效率差距跨越臨界點,IGBT被淘汰便是唯一結局 傾佳電子楊茜致力于推動國產SiC碳化硅模塊電力
    的頭像 發表于 05-30 16:24 ?218次閱讀
    <b class='flag-5'>硅</b>基時代的黃昏:為何<b class='flag-5'>SiC</b> MOSFET全面淘汰IGBT?

    SiC MOSFET 開關模塊RC緩沖吸收電路的參數優化設計

    電路(簡稱“RC 電路”)的功率加以限制。關斷尖峰電壓越高,SiC 器件電壓應力越大,器件壽命則越短,因此滿足關斷尖峰電壓盡可能低的前提下使 RC 電路的功率最小,這樣可以延長價格昂貴的 SiC
    發表于 04-23 11:25

    麥科信光隔離探頭碳化硅(SiC)MOSFET動態測試中的應用

    測試結果的準確性。 采用麥科信光隔離探頭MOIP200P的SiC MOSFET動態測試結果 客戶反饋 SiC MOSFET的納秒級開關動態測試中,探頭180dB的共模抑制有效抑制
    發表于 04-08 16:00

    CAB450M12XM3工業級SiC半橋功率模塊CREE

    及高效率需求的應用而設計。CAB450M12XM3電動汽車充電站、不間斷電源系統(UPS)以及牽引驅動系統等領域展現出了卓越的性能。 主要特性 極致功率密度:得益于SiC技術
    發表于 03-17 09:59

    SiC MOSFET的參數特性

    碳化硅(SiC)MOSFET作為寬禁帶半導體材料(WBG)的一種,具有許多優異的參數特性,這些特性使其高壓、高速、高溫等應用中表現出色。本文將詳細探討SiC MOSFET的主要參數特性,并通過對比
    的頭像 發表于 02-02 13:48 ?1049次閱讀

    浮思特|如何通過設計SiC功率模塊優化電動汽車電機驅動熱管理效率?

    所應用,但要想大規模使用,必須改進其散熱性能。SiC電機驅動系統中,各種具有改進熱散性能的器件設計正在涌現。電動汽車熱設計中的SiC熱散系統功率
    的頭像 發表于 12-09 11:54 ?784次閱讀
    浮思特|如何通過設計<b class='flag-5'>SiC</b>功率模塊優化電動汽車電機驅動<b class='flag-5'>熱管理</b>效率?

    電力電子熱管理未來趨勢與挑戰!

    快速發展的電力電子領域熱管理已成為確保設備可靠性、效率和耐久性的重要因素。這在電動車等能源密集型行業尤為相關,其中碳化硅(SiC)和氮化
    的頭像 發表于 11-28 11:20 ?811次閱讀
    電力<b class='flag-5'>電子</b>的<b class='flag-5'>熱管理</b>未來趨勢與挑戰!

    碳化硅SiC光電器件中的使用

    碳化硅的基本特性 碳化硅是一種由碳和組成的化合物半導體,具有以下特性: 寬帶隙 :SiC的帶隙寬度約為3.26eV,遠大于(Si)的1.12eV,這使得SiC
    的頭像 發表于 11-25 18:10 ?1592次閱讀

    碳化硅SiC電子器件中的應用

    隨著科技的不斷進步,電子器件的性能要求也日益提高。傳統的(Si)材料某些應用中已經接近其物理極限,尤其是高溫、高壓和高頻領域。碳化硅(
    的頭像 發表于 11-25 16:30 ?1739次閱讀

    深度了解SiC的晶體結構

    SiC是由(Si)和碳(C)按1:1的化學計量組成的晶體,因其內部結構堆積順序的不同,形成不同的SiC多型體,本篇章帶你了解SiC的晶體
    的頭像 發表于 11-14 14:57 ?3288次閱讀
    深度了解<b class='flag-5'>SiC</b>的晶體結構

    SiC MOSFET和SiC SBD的區別

    SiC MOSFET(碳化硅金屬氧化物半導體場效應晶體管)和SiC SBD(碳化硅肖特基勢壘二極管)是兩種基于碳化硅(SiC)材料的功率半導體器件,它們電力
    的頭像 發表于 09-10 15:19 ?3333次閱讀

    SiC二極管概述和技術參數

    傳統的(Si)基器件,具有更高的熱導率、更高的臨界擊穿電場以及更高的電子飽和漂移速度,這些特性使得SiC二極管電力電子
    的頭像 發表于 09-10 14:55 ?2396次閱讀

    QorvoSiC領域的戰略布局

    SiC領域正在迎來群雄逐鹿的新時代,而射頻芯片巨頭Qorvo亦在電源應用領域耕耘多年,已占據自己的一席之地。
    的頭像 發表于 08-12 14:57 ?819次閱讀
    Qorvo<b class='flag-5'>在</b><b class='flag-5'>SiC</b><b class='flag-5'>領域</b>的戰略布局

    詳解電力電子領域碳化硅(SiC)的熱行為

    碳化硅(SiC)功率電子學中相比傳統的工藝技術具有眾多優勢。它結合了更高的電子遷移率、更寬的帶隙和
    的頭像 發表于 07-19 11:49 ?5w次閱讀
    詳解電力<b class='flag-5'>電子</b><b class='flag-5'>領域</b>碳化硅(<b class='flag-5'>SiC</b>)的熱行為

    用碳化硅(SiC)重新思考軟開關效率

    從理論上講,碳化硅(SiC)技術(Si)具有優勢,這使得它看起來可以作為電力電子中現有MOSFET的直接替代品。這在一定程度上是正確的,但只要關注該技術與
    的頭像 發表于 06-19 11:13 ?1161次閱讀
    用碳化硅(<b class='flag-5'>SiC</b>)重新思考軟開關效率
    主站蜘蛛池模板: 国产精品久久久久久吹潮 | 亚洲午夜在线观看 | 九九免费久久这里有精品23 | 四虎永久影院永久影库 | 岛国毛片 | 欧美视频xxxxx | 久久久精品免费观看 | 色噜噜在线视频 | 国模伊人| 奇米影视亚洲春色77777 | 精品视频一区二区三区 | 豆国产97在线 | 欧洲 | 欧美日韩色综合网站 | 女人被免费网站视频在线 | 香蕉视频久久久 | 黄 色 录像成 人播放免费99网 | 欧美高清另类 | 天天操中文字幕 | 狠狠操精品视频 | 午夜伦y4480影院中文字幕 | 亚洲精品卡1卡二卡3卡四卡 | 久久精品综合视频 | 国产在线播放一区 | 六月丁香婷婷综合 | 黄页网址免费观看18网站 | 中文字幕一区二区视频 | 又黄又湿又爽吸乳视频 | 夜夜夜夜曰天天天天拍国产 | 国产91丝袜在线播放九色 | 天天久久综合 | 免费观看国产网址你懂的 | 国产精品久久久久久久免费大片 | 国产精品欧美激情第一页 | 天堂网最新版www | 久久精品国产福利国产琪琪 | 色多多影视 | 成人黄色网址 | 五月激情综合婷婷 | 国产精品福利久久 | 日本黄色大片在线播放视频免费观看 | 天天拍夜夜操 |