在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

10億個晶體管/mm2 1nm節點可以這樣做

旺材芯片 ? 來源:旺材芯片 ? 作者:旺材芯片 ? 2020-12-30 17:27 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

在接下來的幾個高級過程節點的設備路線圖似乎已經相對清晰。FinFET拓撲將被GAA(gate-all-around)器件取代,通常使用多個堆疊通道,金屬柵完全圍繞“納米片”。盡管鰭片由于在鰭片的高度和厚度上的遍歷而表現出改善的柵極至溝道靜電,但堆疊的納米片卻進一步改善了這種靜電控制-優化了亞閾值泄漏電流。 提議的對納米片拓撲的擴展采用“forksheet”,如下圖所示。

forksheet研發的目標是消除nFET到pFET器件的間距規則(用于公共柵極輸入連接),用薄氧化物隔離兩組納米板。晶體管密度獲得這種引人注目的增益的代價是——柵極再次在三個側面上包圍了溝道體積–“ FinFET側面翻轉”是forksheet的一個常見的相似之處。 盡管后FinFET節點的大批量制造(HVM)的日期有些不確定,但是可以預料,這些不斷發展的納米片/forksheet拓撲將在2024-25年間出現。 目前正在積極進行工藝開發和設備研究,以尋找無數納米片的替代品。

假設“納米”設備拓撲將至少用于兩個進程節點,如果任何新設備要在2028-30年達到HVM,現在就需要積極地進行研究。 在最近的IEDM會議上,Synopsys展示了他們在此時間范圍內針對“ 1nm”節點的領先器件替代產品之一的預測和設計技術協同優化(DTCO)評估結果。本文總結了他們演講的重點。1nm 節點下圖描述了最近幾個工藝節點的晶體管密度的直線趨勢。(此圖是Synopsys與IC Knowledge,Inc.合作的一部分。)

關于這張圖需要注意的幾點:

x軸上的節點名稱代表了從14nm節點的簡單過渡,每個連續的數據點都由0.7X摩爾定律線性乘數定義(為了便于討論,如果DTCO工藝發展的目標確實是保持在這條曲線上,那么使用0.7X的命名是合適的。)

每個節點上的密度數據點代表來自多個代工廠的指標

數據點包括對邏輯和SRAM實施的單獨測量

邏輯密度通常與代工技術常用的基礎庫單元實現有關。例如,一個2輸入NAND單元的面積反映了單元中4個器件的使用情況。

接觸的多間距 the contacted poly pitch(CPP)

cell中水平金屬走線的數量(用于信號電源

cell鄰接隔離間隔(“擴散中斷”與單元之間的虛設柵極捆綁在一起)

另一個關鍵的單元維度是一個(可掃描的)數據觸發器的面積。上面的晶體管密度計算對每個邏輯數據點使用了NAND和FF單元的邏輯混合。 特別值得注意的是,在Synopsys對1nm節點的預測中使用的器件拓撲結構的假設。目前正在積極研究,以便在與該節點一致的時間范圍內評估幾種非硅場效應器件類型--例如,二維半導體材料(MoS2)和一維碳納米管。為了保持在晶體管密度曲線上的目標,Synopsys TCAD團隊采用了DTCO工藝定義來實現3D“互補FET”。下圖展示了CFET的橫截面。

CFET技術的一個吸引人的特征是與納米片拓撲結構的相似性,后者將在1nm節點的時間范圍內具有多年的制造經驗。CFET方法的新穎之處在于pFET和nFET納米片的垂直放置。

CFET拓撲利用了典型的CMOS邏輯應用,其中將公共輸入信號施加到nFET和pFET器件的柵極。(稍后將討論具有僅nFET字線傳輸門的6T SRAM位單元的獨特情況。)

上圖顯示了pFET納米片如何直接位于nFET納米片下方。在圖中,存在兩個nFET納米片,比pFET窄,這主要是由于需要空間來接觸pFET源極和漏極節點,因此nFET的寬度減小了。并聯的兩個nFET將提供與pFET相當的驅動強度。(CFET中的SRAM位單元設計采用了不同的策略。)還顯示了有源柵極上的M0接觸(COAG)拓撲結構,擴展了這種最新的工藝增強功能。 CFET器件的處理需要特別注意pFET和nFET的形成。

用于pFET源/漏節點的SiGe的外延生長用于在溝道中引入壓縮應變,以提高空穴遷移率。然后執行pFET柵極氧化物和金屬柵極沉積。隨后,nFET源極/漏極節點的外延Si生長,隨后的柵極氧化物和金屬柵極沉積必須遵守現有pFET器件施加的材料化學約束。

埋入式電源軌(Power rails) 請注意,對于1nm節點的假設是,本地VDD和GND分布將由“埋入電軌”(BPR)提供,它們位于基板中的納米片下方。結果,既需要“淺”(器件)通孔,又需要“深”(BPR)通孔。因此,BPR和過孔的金屬成分是關鍵的工藝優化,以降低寄生接觸電阻。(主要)金屬必須具有低電阻率,并以極薄的勢壘和襯里材料沉積在溝槽中。

cbec295c-4a30-11eb-8b86-12bb97331649.png

說到寄生,下面的(簡化)布局圖突出了CFET拓撲的獨特優勢。CFET器件的三維方向消除了單獨的nFET和pFET區域之間的柵極穿越。而且,與FinFET器件布局相比,柵極到源極/漏極局部金屬化層的并行運行長度顯著減少。(圖中顯示了經過納米片的較小的柵極長度擴展。)結果,使用CFET極大地改善了器件的寄生Rgate電阻和Cgs / Cgd電容。CFET SRAM設計在CFET工藝中實現6T SRAM位單元會引入一些權衡。Synopsys DTCO團隊選擇了獨特的設計特性,如下圖所示。

1. nFET下拉:pFET上拉比很容易達到2:1 前面所示的兩個較小的nFET納米片,其邏輯驅動強度比為1:1,與SRAM位單元中的pFET的寬度相同,驅動力為2:1。(請注意,這可以與FinFET位單元相媲美,其中nFET鰭片的數量為2而pFET鰭片的數量為1。) 2. 實現了一對修改的nFET傳輸門器件 用于傳輸門(pass gates)的兩個nFET納米片(略)比下拉電阻弱;柵極僅存在于納米片的三個側面上。

這種“三柵極”配置提供了更密集的位單元,并優化了傳輸門:下拉nFET器件的相對強度,以實現可靠的單元讀取容限。 3. 通過門器件下的pFET納米片現在變成無效的“虛擬”門 4. 內部6T單元互連使用唯一的“交叉耦合”層(在M0通孔水平) 在工藝開發的早期,DTCO分析利用TCAD模擬工具,來表示材料的光刻圖版、材料沉積和(選擇性)蝕刻輪廓。這項早期的優化工作提供了對所需的工藝窗口、預期的材料尺寸和電學特性的見解,包括優化自由載流子遷移率的溝道應變。

后續的寄生提取,與設備模型合并,為新工藝提供初步的功率/性能度量,并結合設備布局區域進行全面的PPA評估。下圖提供了上述SRAM位單元的DTCO的可視化分析。總結在IEDM上,Synopsys TCAD團隊提供了對 "1nm "節點特性的窺探,該節點基于CFET器件拓撲結構,在兩個nFET納米片下面有一個pFET納米片。還假設了埋入式電源軌。光刻假設是基于利用(高數值孔徑)EUV--例如,39nm CPP(帶COAG)和19nmM0金屬間距。對于相對的PUPG驅動強度和內部交叉耦合互連層,都采用了獨特的SRAM位單元設計方法。 這種DTCO分析的結果表明,1nm CFET節點可能確實能夠保持激進的晶體管密度,接近10億個晶體管/平方毫米。

責任編輯:xj

原文標題:關注 | 10億個晶體管/mm2 !1nm節點可以這樣做

文章出處:【微信公眾號:旺材芯片】歡迎添加關注!文章轉載請注明出處。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 芯片
    +關注

    關注

    459

    文章

    52443

    瀏覽量

    439800
  • 晶體管
    +關注

    關注

    77

    文章

    10013

    瀏覽量

    141428
  • 1nm
    1nm
    +關注

    關注

    0

    文章

    16

    瀏覽量

    4015

原文標題:關注 | 10億個晶體管/mm2 !1nm節點可以這樣做

文章出處:【微信號:wc_ysj,微信公眾號:旺材芯片】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    下一代高速芯片晶體管解制造問題解決了!

    提高了器件的性能。據IMEC的研究,叉片晶體管相比納米片晶體管可以實現約10%的性能提升。 叉片晶體管被認為是未來
    發表于 06-20 10:40

    多值電場型電壓選擇晶體管結構

    內建電場來控制晶體管對電壓的選擇性通斷,如圖: 該晶體管由兩PN結組成,第一晶體管PN結在外加電場下正向偏置,減小了內建電場,當通入的電
    發表于 04-15 10:24

    晶體管電路設計(下)

    晶體管,FET和IC,FET放大電路的工作原理,源極接地放大電路的設計,源極跟隨器電路設計,FET低頻功率放大器的設計與制作,柵極接地放大電路的設計,電流反饋型OP放大器的設計與制作,進晶體管
    發表于 04-14 17:24

    晶體管電流放大器的原理 晶體管在功放電路中的應用實例

    晶體管電流放大器的原理 晶體管是一種半導體器件,能夠對電流進行控制和放大。晶體管的工作原理基于半導體材料的PN結特性。PN結由P型半導體和N型半導體組成,它們在接觸時形成一勢壘,阻止
    的頭像 發表于 12-03 09:50 ?2016次閱讀

    晶體管故障診斷與維修技巧 晶體管在數字電路中的作用

    可以作為開關使用,控制電流的流動。在數字電路中,晶體管通常用于構建邏輯門,實現二進制信號的邏輯運算。 信號放大 :晶體管可以放大信號,這對于信號的傳輸和處理至關重要。 電流控制 :
    的頭像 發表于 12-03 09:46 ?1654次閱讀

    晶體管與場效應的區別 晶體管的封裝類型及其特點

    晶體管與場效應的區別 工作原理 : 晶體管晶體管(BJT)基于雙極型晶體管的原理,即通過控制基極電流來控制集電極和發射極之間的電流。
    的頭像 發表于 12-03 09:42 ?985次閱讀

    晶體管的基本工作模式

    晶體管作為電子電路中的核心元件,其基本工作模式對于理解其工作原理和應用至關重要。晶體管的工作模式主要可以分為兩大類:放大模式和開關模式。這兩種模式基于晶體管內部PN結的特性,通過控制輸
    的頭像 發表于 09-13 16:40 ?1880次閱讀

    NMOS晶體管和PMOS晶體管的區別

    NMOS晶體管和PMOS晶體管是兩種常見的金屬氧化物半導體場效應晶體管(MOSFET)類型,它們在多個方面存在顯著的差異。以下將從結構、工作原理、性能特點、應用場景等方面詳細闡述NMOS晶體管
    的頭像 發表于 09-13 14:10 ?7720次閱讀

    CMOS晶體管和MOSFET晶體管的區別

    CMOS晶體管和MOSFET晶體管在電子領域中都扮演著重要角色,但它們在結構、工作原理和應用方面存在顯著的區別。以下是對兩者區別的詳細闡述。
    的頭像 發表于 09-13 14:09 ?3949次閱讀

    晶體管的spice模型,可以導入TINA嗎?

    晶體管的spice模型,可以導入TINA嗎?謝謝
    發表于 08-26 06:30

    晶體管,場效應是什么控制器件

    晶體管和場效應是兩種非常重要的電子控制器件,它們在現代電子技術中發揮著關鍵作用。 一、晶體管 晶體管的工作原理 晶體管是一種半導體器件,主
    的頭像 發表于 08-01 09:14 ?1129次閱讀

    晶體管處于放大狀態的條件是什么

    晶體管是一種半導體器件,廣泛應用于電子設備中。它具有三主要的引腳:基極(B)、發射極(E)和集電極(C)。晶體管的工作原理是通過控制基極和發射極之間的電流,來控制集電極和發射極之間的電流。
    的頭像 發表于 07-18 18:15 ?2893次閱讀

    芯片晶體管的深度和寬度有關系嗎

    一、引言 有關系。隨著集成電路技術的飛速發展,芯片晶體管作為電子設備的核心元件,其性能的優化和制造技術的提升成為了行業關注的焦點。在晶體管的眾多設計參數中,深度和寬度是兩至關重要的因素。它們不僅
    的頭像 發表于 07-18 17:23 ?1352次閱讀

    晶體管放大飽和截止怎么判斷

    主要由兩PN結組成,分別為發射結和集電結。晶體管的三主要引腳為基極(B)、發射極(E)和集電極(C)。晶體管的工作原理可以概括為:通過控
    的頭像 發表于 07-18 15:32 ?3061次閱讀

    晶體管電流的關系有哪些類型 晶體管的類型

    和設計電子電路具有重要意義。 晶體管的基本結構和工作原理 晶體管主要由三層半導體材料組成,分別為發射極(Emitter)、基極(Base)和集電極(Collector)。根據半導體材料的類型,晶體管
    的頭像 發表于 07-09 18:22 ?2649次閱讀
    <b class='flag-5'>晶體管</b>電流的關系有哪些類型 <b class='flag-5'>晶體管</b>的類型
    主站蜘蛛池模板: аⅴ天堂中文在线网 | 亚洲男人a天堂在线2184 | 免费网站日本 | 五色网| 午夜视频免费在线观看 | 公妇乱淫日本免费观看 | 手机在线一区二区三区 | 国产高清精品自在久久 | 中文字幕亚洲一区二区va在线 | 日本三级理论片 | 亚洲日本一区二区 | 一级a毛片免费观看 | 老色歌uuu26| 五月综合激情网 | 欧美三级在线观看黄 | 高黄网站 | 国产一区高清 | 国内精品网站 | 午夜视频在线网站 | 巨乳色网址 | 久久99精品福利久久久 | 久久综合九色综合欧美播 | 天堂电影在线 | 久久综合色视频 | 国产午夜在线观看视频 | 亚洲综合激情九月婷婷 | 加勒比日本道 | 天天摸天天做 | 美女视频黄视大全视频免费网址 | 五月激情片| 午夜免费观看_视频在线观看 | 蕾丝视频在线播放 | 国产特黄| 色狠狠狠色噜噜噜综合网 | 丁香花在线视频 | 亚洲αv久久久噜噜噜噜噜 亚洲аv电影天堂网 | 日韩欧美一区二区三区不卡视频 | 婷婷射| 天天视频免费入口 | 日本免费黄色 | 熟妇毛片|