91在线观看视频-91在线观看视频-91在线观看免费视频-91在线观看免费-欧美第二页-欧美第1页

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

目標檢測模型和Objectness的知識

電子設計 ? 來源:電子設計 ? 作者:電子設計 ? 2022-02-12 17:00 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

作者:Nathan Zhao
編譯:ronghuaiyang

導讀

在本文中,我們將討論目標檢測模型和Objectness的基礎知識。

什么是物體檢測模型?

物體檢測模型本質上,正如其名稱所示,檢測物體。這意味著給定一個圖像,它可以告訴你物體在哪里,以及這個物體是什么。例如,在上面的圖像中,我們有許多物體,并且使用物體檢測模型,我們已經檢測出不同的物體在圖像中的位置。

這類模型有很多應用。舉幾個例子,物體檢測在以下方面很有用:

自動駕駛汽車,可以檢測到乘客、其他車輛、紅綠燈和停車標志。

安保,模型可以探測到公共區域的槍支或炸彈,并向附近的警察報警。

總的來說,這類模型非常有用,在過去幾年里,機器學習社區已經對它們進行了大量的研究。

物體檢測中區域建議的介紹

首先,讓我們了解一下物體檢測模型是如何工作的。首先,我們必須給出一個物體的建議位置。我們把這個建議的位置稱為我們感興趣的區域,通常顯示在一個邊界框(也稱為圖像窗口)中。根據物體檢測模型的類型,我們可以通過許多不同的方式來實現這一點。

樸素方法:我們將圖像分割成多個部分,并對每個部分進行分類。這種方法效率低下是因為必須對每個生成的窗口應用分類網絡(CNN),導致計算時間長。

滑動窗口方法:我們預先確定好窗口比例(或“錨”),然后滑過圖像。對于每個窗口,我們處理它并繼續滑動。與樸素方法類似,這種方法生成的窗口較多,處理時間也比較長。

選擇性搜索:使用顏色相似度,紋理相似度,和一些其他的圖像細節,我們可以用算法將圖像分割成區域。雖然選擇性搜索算法本身是耗時的,但這使得分類網絡的應用需求較少。

區域建議網絡:我們創建一個單獨的網絡來確定圖像中感興趣的區域。這使得我們的模型工作得更快,但也使得我們最終模型的準確性依賴于多個網絡。

上面列出的這些不同選項之間有一些區別,但一般來說,當我們加快網絡的處理時間時,我們往往會犧牲模型的準確性。

區域建議機制的主要問題是,如果建議的區域不包含物體,那么你的分類網絡也會去分類這個區域,并給出一個錯誤的標記。

那么,什么是Objectness?

Objectness本質上是物體存在于感興趣區域內的概率的度量。如果我們Objectness很高,這意味著圖像窗口可能包含一個物體。這允許我們快速地刪除不包含任何物體的圖像窗口。

如果一幅圖像具有較高的Objectness,我們期望它具有:

在整個圖像中具有唯一性

物體周圍有嚴格的邊界

與周圍環境的外觀不同

例如,在上面的圖像中,我們期望紅色框具有較低的Objectness,藍色框具有中等的Objectness,綠色框具有較高的Objectness。這是因為綠色的框“緊密”地圍繞著我們的物體,而藍色的框則很松散,而紅色的框根本不包含任何物體。

我們如何度量Objectness?

有大量的參數影響圖像窗口的objectness。

多尺度顯著性:這本質上是對圖像窗口的外觀獨特性的度量。與整個圖像相比,框中唯一性像素的密度越高,該值就越高。

顏色對比度:框內像素與建議圖像窗口周圍區域的顏色對比度越大,該值越大。

邊緣密度:我們定義邊緣為物體的邊界,這個值是圖像窗口邊界附近的邊緣的度量值。一個有趣的算法可以找到這些邊緣:https://cv-tricks.com/opencv-dnn/edge-detection-hed/。

超像素跨越:我們定義超像素是幾乎相同顏色的像素團。如果該值很高,則框內的所有超像素只包含在其邊界內。

超像素區域以不同顏色顯示。請注意,框內的超像素大部分不會泄漏到圖像窗口之外。因此,這個“超素跨界”值將會很高。

以上參數值越高,objectness越高。試著將上述參數與我們前面列出的具有高objectness的圖像的期望聯系起來。

英文原文:https://medium.com/@zhao.nathan/understanding-objectness-in-object-detection-models-5d8c9d032488
本文轉自:AI公園,作者:Nathan Zhao,編譯:ronghuaiyang,
轉載此文目的在于傳遞更多信息,版權歸原作者所有。

審核編輯:何安

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 物體檢測
    +關注

    關注

    0

    文章

    8

    瀏覽量

    9288
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    【VisionFive 2單板計算機試用體驗】在 VisionFive 2 上為目標檢測準備軟件環境并運行 MobileNet-SSD 模型

    目標: 本教程將實現在 StarFive VisionFive 2 開發板上為目標檢測應用準備所需軟件環境,并最終運行一個基于 MobileNet-SSD 的目標
    發表于 07-10 19:51

    基于LockAI視覺識別模塊:C++目標檢測

    /LockzhinerAI/LockzhinerVisionModule/tree/master/Cpp_example/D01_test_detection 1. 基礎知識講解 1.1 目標檢測的基本介紹
    發表于 06-06 14:43

    基于LockAI視覺識別模塊:C++目標檢測

    本文檔基于瑞芯微RV1106的LockAI凌智視覺識別模塊,通過C++語言做的目標檢測實驗。本文檔展示了如何使用lockzhiner_vision_module::PaddleDet類進行目標
    的頭像 發表于 06-06 13:56 ?217次閱讀
    基于LockAI視覺識別模塊:C++<b class='flag-5'>目標</b><b class='flag-5'>檢測</b>

    labview調用yolo目標檢測、分割、分類、obb

    labview調用yolo目標檢測、分割、分類、obb、pose深度學習,支持CPU和GPU推理,32/64位labview均可使用。 (yolov5~yolov12)
    發表于 03-31 16:28

    軒轅智駕紅外目標檢測算法在汽車領域的應用

    在 AI 技術蓬勃發展的當下,目標檢測算法取得了重大突破,其中紅外目標檢測算法更是在汽車行業掀起了波瀾壯闊的變革,從根本上重塑著汽車的安全性能、駕駛體驗與產業生態。
    的頭像 發表于 03-27 15:55 ?420次閱讀

    如何使用OpenVINO?運行對象檢測模型

    無法確定如何使用OpenVINO?運行對象檢測模型
    發表于 03-06 07:20

    AI Cube進行yolov8n模型訓練,創建項目目標檢測時顯示數據集目錄下存在除標注和圖片外的其他目錄如何處理?

    AI Cube進行yolov8n模型訓練 創建項目目標檢測時顯示數據集目錄下存在除標注和圖片外的其他目錄怎么解決
    發表于 02-08 06:21

    采用華為云 Flexus 云服務器 X 實例部署 YOLOv3 算法完成目標檢測

    一、前言 1.1 開發需求 這篇文章講解:?采用華為云最新推出的 Flexus 云服務器 X 實例部署 YOLOv3 算法,完成圖像分析、目標檢測。 隨著計算機視覺技術的飛速發展,深度學習模型
    的頭像 發表于 01-02 12:00 ?542次閱讀
    采用華為云 Flexus 云服務器 X 實例部署 YOLOv3 算法完成<b class='flag-5'>目標</b><b class='flag-5'>檢測</b>

    AI模型部署邊緣設備的奇妙之旅:目標檢測模型

    以及邊緣計算能力的增強,越來越多的目標檢測應用開始直接在靠近數據源的邊緣設備上運行。這不僅減少了數據傳輸延遲,保護了用戶隱私,同時也減輕了云端服務器的壓力。然而,在邊緣端部署高效且準確的目標
    發表于 12-19 14:33

    AI模型部署邊緣設備的奇妙之旅:目標檢測模型

    1簡介人工智能圖像識別是人工智能領域的一個重要分支,它涉及計算機視覺、深度學習、機器學習等多個領域的知識和技術。圖像識別主要是處理具有一定復雜性的信息。計算機采用與人類類似的圖像識別原理,即對圖像
    的頭像 發表于 12-19 14:12 ?1368次閱讀
    AI<b class='flag-5'>模型</b>部署邊緣設備的奇妙之旅:<b class='flag-5'>目標</b><b class='flag-5'>檢測</b><b class='flag-5'>模型</b>

    YOLOv10自定義目標檢測之理論+實踐

    概述 YOLOv10 是由清華大學研究人員利用 Ultralytics Python 軟件包開發的,它通過改進模型架構并消除非極大值抑制(NMS)提供了一種新穎的實時目標檢測方法。這些優化使得
    的頭像 發表于 11-16 10:23 ?1604次閱讀
    YOLOv10自定義<b class='flag-5'>目標</b><b class='flag-5'>檢測</b>之理論+實踐

    在樹莓派上部署YOLOv5進行動物目標檢測的完整流程

    卓越的性能。本文將詳細介紹如何在性能更強的計算機上訓練YOLOv5模型,并將訓練好的模型部署到樹莓派4B上,通過樹莓派的攝像頭進行實時動物目標檢測。 一、在電腦上訓練YOLOv5
    的頭像 發表于 11-11 10:38 ?3704次閱讀
    在樹莓派上部署YOLOv5進行動物<b class='flag-5'>目標</b><b class='flag-5'>檢測</b>的完整流程

    目標檢測中大物體的重要性

    導讀實驗表明,對大型物體賦予更大的權重可以提高所有尺寸物體的檢測分數,從而整體提升目標檢測器的性能(在COCOval2017數據集上使用InternImage-T模型,小物體
    的頭像 發表于 10-09 08:05 ?813次閱讀
    在<b class='flag-5'>目標</b><b class='flag-5'>檢測</b>中大物體的重要性

    【實操文檔】在智能硬件的大模型語音交互流程中接入RAG知識

    本帖最后由 jf_40317719 于 2024-9-29 17:13 編輯 智能硬件的語音交互接入大模型后可以直接理解自然語言內容,但大模型作為一個語言模型,對專業領域知識
    發表于 09-29 17:12

    想要了解下大模型知識

    工作需要,想要了解一下大模型算力建設知識
    發表于 08-20 15:31
    主站蜘蛛池模板: 国产91色综合久久免费分享 | 黄的三级在线播放 | 欧美人与动性xxxxbbbb | 四虎影院官网 | 爱综合网 | 一级在线观看 | 国产日本特黄特色大片免费视频 | 日本不卡视频一区二区三区 | 99久久无色码中文字幕 | av2014天堂网| 色综合视频一区二区三区 | 天天靠天天擦天天摸 | 男女视频在线观看免费高清观看 | 久碰香蕉精品视频在线观看 | 综合欧美一区二区三区 | 国产人免费人成免费视频 | 天堂v网| 天天射天天操天天干 | 黄网在线免费看 | 精品三级内地国产在线观看 | cijilu刺激 国产 | 在线你懂得 | 色aaa| 免费又爽又黄1000禁片 | 日本三级黄色录像 | 泰国一级毛片aaa下面毛多 | 上课被同桌强行摸下面小黄文 | 四虎影院国产精品 | 国产欧美一区二区三区观看 | 伊人91在线 | 三级黄色在线视频中文 | 免费网站成人亚洲 | 美女牲交毛片一级视频 | a4yy私人毛片在线 | 国产成人mv在线观看入口视频 | 久久人人网 | 毛片一区二区三区 | 成人免费看黄页网址大全 | 亚洲综合成人网 | 免费看一级特黄a大片 | 男女视频在线观看免费高清观看 |