在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

研究人員開發(fā)“液態(tài)”神經(jīng)網(wǎng)絡(luò) 可適應(yīng)快速變化的訓(xùn)練環(huán)境

工程師鄧生 ? 來源:cnBeta.COM ? 作者:cnBeta.COM ? 2021-01-29 10:46 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

想要適應(yīng)自動駕駛、控制機器人、醫(yī)療診斷等場景,就必須讓神經(jīng)網(wǎng)絡(luò)適應(yīng)快速變化的各種狀況。好消息是,麻省理工(MIT)計算機科學(xué)與人工智能實驗室(CSAIL)的 Ramin Hasani 團隊,已經(jīng)設(shè)計出了一種具有重大改進的“液態(tài)”神經(jīng)網(wǎng)絡(luò)。其特點是能夠在投入訓(xùn)練階段之后,極大地擴展 AI 技術(shù)的靈活性。

通常情況下,研究人員會在訓(xùn)練階段向神經(jīng)網(wǎng)絡(luò)算法提供大量相關(guān)的目標(biāo)數(shù)據(jù),來磨煉其推理能力。

期間通過對正確的響應(yīng)加以獎勵,以優(yōu)化其性能。然而傳統(tǒng)的訓(xùn)練方案,明顯還是過于“刻板”了。

有鑒于此,Ramin Hasani 與團隊成員合作開發(fā)了一套新方法,讓神經(jīng)網(wǎng)絡(luò)可以像“液體”一樣,隨著時間的流逝而更好地適應(yīng)“正確”的新信息。

舉個例子,如果無人駕駛汽車上的感知神經(jīng)網(wǎng)絡(luò)能夠分辨晴朗的天空和大雪等環(huán)境,就可以更好地順應(yīng)情況的變化、并維持較高的性能。

這項新研究的主要特點,是側(cè)重于時間序列的適應(yīng)性。比之建立于訓(xùn)練數(shù)據(jù)的多快照或時間上的靜態(tài)時刻,可流動的液態(tài)神經(jīng)網(wǎng)絡(luò)可以將時間序列或圖像序列也考慮進來,而不是孤立的各個片段。

得益于這種系統(tǒng)設(shè)計方法,與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)相比,MIT 的液態(tài)系統(tǒng)實際上更便于開展觀察研究。

前一種 AI 通常被稱作‘黑盒’,盡管算法開發(fā)者明確知曉輸入信息的判定準(zhǔn)則,但通常無法確定其中到底發(fā)生了什么。

而液態(tài)神經(jīng)網(wǎng)絡(luò)在這部分提升了透明度、對復(fù)雜計算節(jié)點的依賴性也更少,因此還具有相當(dāng)不錯的成本優(yōu)勢。

最終結(jié)果表明,在預(yù)測已知數(shù)據(jù)集的未來值方面,液態(tài)神經(jīng)網(wǎng)絡(luò)的準(zhǔn)確性要顯著優(yōu)于其它替代方案。

下一步,Hasani 將與團隊成員繼續(xù)改進液態(tài)神經(jīng)網(wǎng)絡(luò)的性能表現(xiàn),并努力將之推向?qū)嶋H應(yīng)用。

責(zé)任編輯:PSY

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4814

    瀏覽量

    103462
  • 數(shù)據(jù)
    +關(guān)注

    關(guān)注

    8

    文章

    7253

    瀏覽量

    91771
  • 自動駕駛
    +關(guān)注

    關(guān)注

    788

    文章

    14304

    瀏覽量

    170498
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    無刷電機小波神經(jīng)網(wǎng)絡(luò)轉(zhuǎn)子位置檢測方法的研究

    摘要:論文通過對無刷電機數(shù)學(xué)模型的推導(dǎo),得出轉(zhuǎn)角:與三相相電壓之間存在映射關(guān)系,因此構(gòu)建了一個以三相相電壓為輸人,轉(zhuǎn)角為輸出的小波神經(jīng)網(wǎng)絡(luò)來實現(xiàn)轉(zhuǎn)角預(yù)測,并采用改進遺傳算法來訓(xùn)練網(wǎng)絡(luò)結(jié)構(gòu)與參數(shù),借助
    發(fā)表于 06-25 13:06

    神經(jīng)網(wǎng)絡(luò)RAS在異步電機轉(zhuǎn)速估計中的仿真研究

    眾多方法中,由于其結(jié)構(gòu)簡單,穩(wěn)定性好廣泛受到人們的重視,且已被用于產(chǎn)品開發(fā)。但是MRAS仍存在在低速區(qū)速度估計精度下降和對電動機參數(shù)變化非常敏感的問題。本文利用神經(jīng)網(wǎng)絡(luò)的特點,使估計更為簡單、
    發(fā)表于 06-16 21:54

    BP神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點分析

    自學(xué)習(xí)能力 : BP神經(jīng)網(wǎng)絡(luò)能夠通過訓(xùn)練數(shù)據(jù)自動調(diào)整網(wǎng)絡(luò)參數(shù),實現(xiàn)對輸入數(shù)據(jù)的分類、回歸等任務(wù),無需人工進行復(fù)雜的特征工程。 泛化能力強 : BP神經(jīng)網(wǎng)絡(luò)通過
    的頭像 發(fā)表于 02-12 15:36 ?897次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    ),是一種多層前饋神經(jīng)網(wǎng)絡(luò),它通過反向傳播算法進行訓(xùn)練。BP神經(jīng)網(wǎng)絡(luò)由輸入層、一個或多個隱藏層和輸出層組成,通過逐層遞減的方式調(diào)整網(wǎng)絡(luò)權(quán)重,目的是最小化
    的頭像 發(fā)表于 02-12 15:15 ?845次閱讀

    如何訓(xùn)練BP神經(jīng)網(wǎng)絡(luò)模型

    BP(Back Propagation)神經(jīng)網(wǎng)絡(luò)是一種經(jīng)典的人工神經(jīng)網(wǎng)絡(luò)模型,其訓(xùn)練過程主要分為兩個階段:前向傳播和反向傳播。以下是訓(xùn)練BP神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:10 ?891次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    所擬合的數(shù)學(xué)模型的形式受到大腦中神經(jīng)元的連接和行為的啟發(fā),最初是為了研究大腦功能而設(shè)計的。然而,數(shù)據(jù)科學(xué)中常用的神經(jīng)網(wǎng)絡(luò)作為大腦模型已經(jīng)過時,現(xiàn)在它們只是能夠在某些應(yīng)用中提供最先進性能的機器學(xué)習(xí)模型。近年來,由于
    的頭像 發(fā)表于 01-09 10:24 ?1175次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    基于光學(xué)衍射神經(jīng)網(wǎng)絡(luò)的軌道角動量復(fù)用全息技術(shù)的設(shè)計與實驗研究

    隨著神經(jīng)網(wǎng)絡(luò)的發(fā)展,光學(xué)神經(jīng)網(wǎng)絡(luò)(ONN)的研究受到廣泛關(guān)注。研究人員從衍射光學(xué)、散射光、光干涉以及光學(xué)傅里葉變換等基礎(chǔ)理論出發(fā),利用各種光學(xué)設(shè)備及材料成功實現(xiàn)了
    的頭像 發(fā)表于 12-07 17:39 ?2801次閱讀
    基于光學(xué)衍射<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的軌道角動量復(fù)用全息技術(shù)的設(shè)計與實驗<b class='flag-5'>研究</b>

    卷積神經(jīng)網(wǎng)絡(luò)的實現(xiàn)工具與框架

    卷積神經(jīng)網(wǎng)絡(luò)因其在圖像和視頻處理任務(wù)中的卓越性能而廣受歡迎。隨著深度學(xué)習(xí)技術(shù)的快速發(fā)展,多種實現(xiàn)工具和框架應(yīng)運而生,為研究人員開發(fā)者提供了強大的支持。 TensorFlow 概述
    的頭像 發(fā)表于 11-15 15:20 ?655次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)訓(xùn)練數(shù)據(jù)準(zhǔn)備方法

    LSTM(Long Short-Term Memory,長短期記憶)神經(jīng)網(wǎng)絡(luò)訓(xùn)練數(shù)據(jù)準(zhǔn)備方法是一個關(guān)鍵步驟,它直接影響到模型的性能和效果。以下是一些關(guān)于LSTM神經(jīng)網(wǎng)絡(luò)訓(xùn)練數(shù)據(jù)準(zhǔn)備的
    的頭像 發(fā)表于 11-13 10:08 ?2089次閱讀

    關(guān)于卷積神經(jīng)網(wǎng)絡(luò),這些概念你厘清了么~

    隨著人工智能(AI)技術(shù)的快速發(fā)展,AI可以越來越多地支持以前無法實現(xiàn)或者難以實現(xiàn)的應(yīng)用。本文基于此解釋了 卷積神經(jīng)網(wǎng)絡(luò) (CNN)及其對人工智能和機器學(xué)習(xí)的意義。CNN是一種能夠從復(fù)雜數(shù)據(jù)中提
    發(fā)表于 10-24 13:56

    【飛凌嵌入式OK3576-C開發(fā)板體驗】RKNN神經(jīng)網(wǎng)絡(luò)算法開發(fā)環(huán)境搭建

    驗過程,以及實驗過程遇到的些許問題,與該文檔有所出入。沒有使用大量的篇幅重新描述實現(xiàn)過程,如果有同志想研究RKNN算法還是要結(jié)合RKNNSDK快速上手指南的。 二、準(zhǔn)備開發(fā)環(huán)境 新建一
    發(fā)表于 10-10 09:28

    Python自動訓(xùn)練人工神經(jīng)網(wǎng)絡(luò)

    人工神經(jīng)網(wǎng)絡(luò)(ANN)是機器學(xué)習(xí)中一種重要的模型,它模仿了人腦神經(jīng)元的工作方式,通過多層節(jié)點(神經(jīng)元)之間的連接和權(quán)重調(diào)整來學(xué)習(xí)和解決問題。Python由于其強大的庫支持(如TensorFlow、PyTorch等),成為了實現(xiàn)和
    的頭像 發(fā)表于 07-19 11:54 ?691次閱讀

    神經(jīng)網(wǎng)絡(luò)專用硬件實現(xiàn)的方法和技術(shù)

    神經(jīng)網(wǎng)絡(luò)專用硬件實現(xiàn)是人工智能領(lǐng)域的一個重要研究方向,旨在通過設(shè)計專門的硬件來加速神經(jīng)網(wǎng)絡(luò)訓(xùn)練和推理過程,提高計算效率和能效比。以下將詳細介紹神經(jīng)
    的頭像 發(fā)表于 07-15 10:47 ?2307次閱讀

    如何使用經(jīng)過訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型

    使用經(jīng)過訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型是一個涉及多個步驟的過程,包括數(shù)據(jù)準(zhǔn)備、模型加載、預(yù)測執(zhí)行以及后續(xù)優(yōu)化等。
    的頭像 發(fā)表于 07-12 11:43 ?1917次閱讀

    脈沖神經(jīng)網(wǎng)絡(luò)怎么訓(xùn)練

    脈沖神經(jīng)網(wǎng)絡(luò)(SNN, Spiking Neural Network)的訓(xùn)練是一個復(fù)雜但充滿挑戰(zhàn)的過程,它模擬了生物神經(jīng)元通過脈沖(或稱為尖峰)進行信息傳遞的方式。以下是對脈沖神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-12 10:13 ?1195次閱讀
    主站蜘蛛池模板: 免费亚洲视频在线观看 | 四虎永久免费地ww4hu57 | 亚洲第七页 | 狠狠干网 | 亚洲欧洲一区二区三区在线观看 | 午夜寂寞影院视频观看 | 成人丁香乱小说 | se94se最新网站 | 激情文学综合丁香 | 六月丁香婷婷综合 | 婷婷免费高清视频在线观看 | 黄视频在线观看免费 | 欧美 亚洲 国产 丝袜 在线 | 色我网站 | 黄色免费在线视频 | 91三级在线 | 四虎永久免费网站 | 天堂资源www天堂在线 | 色老头成人免费综合视频 | 亚洲一区二区三区高清 | 中文字幕二区 | 色视频在线观看网站 | 极品国产一区二区三区 | 色香蕉在线视频 | 色综合色狠狠天天综合色hd | 黄色一级片视频 | 69精品在线 | 91大神在线观看视频 | 亚洲欧美一区二区三区在线播放 | 天天看天天做 | 久久www免费人成高清 | 如色网| 奇米一区二区三区四区久久 | 亚洲黄色高清视频 | 五月婷婷激情网 | 永久免费看www色视频 | 精品伊人久久大线蕉地址 | 色婷婷在线观看视频 | 国模一区二区三区私啪啪 | 素股中文字幕 | 国产欧美日韩综合精品无毒 |