在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

一種基于亂序語言模型的預訓練模型-PERT

深度學習自然語言處理 ? 來源:NLP工作站 ? 作者:劉聰NLP ? 2022-05-10 15:01 ? 次閱讀

寫在前面

今天分享給大家一篇哈工大訊飛聯合實驗室的論文,一種基于亂序語言模型的預訓練模型-PERT,全名《PERT: PRE-TRAINING BERT WITH PERMUTED LANGUAGE MODEL》。該篇論文的核心是,將MLM語言模型的掩碼詞預測任務,替換成詞序預測任務,也就是在不引入掩碼標記[MASK]的情況下自監督地學習文本語義信息,隨機將一段文本的部分詞序打亂,然后預測被打亂詞語的原始位置。

PERT模型的Github以及對應的開源模型其實年前就出來了,只是論文沒有放出。今天一瞬間想起來去看一眼,這不,論文在3月14號的時候掛到了axirv上,今天分享給大家。

paper:https://arxiv.org/pdf/2203.06906.pdf
github:https://github.com/ymcui/PERT

介紹

預訓練語言模型(PLMs)目前在各種自然語言處理任務中均取得了優異的效果。預訓練語言模型主要分為自編碼和自回歸兩種。自編碼PLMs的預訓練任務通常是掩碼語言模型任務,即在預訓練階段,使用[MASK]標記替換原始輸入文本中的一些token,并在詞匯表中恢復這些被[MASK]的token。

常用預訓練語言模型總結:https://zhuanlan.zhihu.com/p/406512290

那么,自編碼PLMs只能使用掩碼語言模型任務作為預訓練任務嗎?我們發現一個有趣的現象“在一段文本中隨機打亂幾個字并不會影響我們對這一段文本的理解”,如下圖所示,乍一看,可能沒有注意到句子中存在一些亂序詞語,并且可以抓住句子的中心意思。該論文探究了是否可以通過打亂句子中的字詞來學習上下文的文本表征,并提出了一個新的預訓練任務,即亂序語言模型(PerLM)。e8d52ce8-cf96-11ec-bce3-dac502259ad0.png

模型

PERT模型結構如上圖所示。PERT模型結構與BERT模型結構相同,僅在模型輸入以及預訓練目標上略有不同。

PERT模型的細節如下:

  • 采用亂序語言模型作為預訓練任務,預測目標為原始字詞的位置;
  • 預測空間大小取決于輸入序列長度,而不是整個詞表的大小(掩碼語言模型預測空間為詞表);
  • 不采用NSP任務;
  • 通過全詞屏蔽和N-gram屏蔽策略來選擇亂序的候選標記;
  • 亂序的候選標記的概率為15%,并且真正打亂順序僅占90%,剩余10%保持不變。

由于亂序語言模型不使用[MASK]標記,減輕了預訓練任務與微調任務之間的gap,并由于預測空間大小為輸入序列長度,使得計算效率高于掩碼語言模型。PERT模型結構與BERT模型一致,因此在下游預訓練時,不需要修改原始BERT模型的任何代碼與腳本。注意,與預訓練階段不同,在微調階段使用正常的輸入序列,而不是打亂順序的序列。

中文實驗結果與分析

預訓練參數

  • 數據:由中文維基百科、百科全書、社區問答、新聞文章等組成,共5.4B字,大約20G。
  • 訓練參數:詞表大小為21128,最大序列長度為512,batch大小為416(base版模型)和128(large版模型),初始學習率為1e-4,使用 warmup動態調節學習率,總訓練步數為2M,采用ADAM優化器。
  • 訓練設備:一臺TPU,128G。

機器閱讀理解MRC任務

在CMRC2018和DRCD兩個數據集上對機器閱讀理解任務進行評測,結果如下表所示。e8e7ca9c-cf96-11ec-bce3-dac502259ad0.png
PERT模型相比于MacBERT模型有部分的提高,并且始終優于其他模型。

文本分類TC任務

在XNLI、LCQMC、BQ Corpus、ChnSentiCorp、TNEWS和OCNLI 6個數據集上對文本分類任務進行評測,結果如下表所示。e901a50c-cf96-11ec-bce3-dac502259ad0.png

在文本分類任務上,PERT模型表現不佳。推測與MRC任務相比,預訓練中的亂序文本給理解短文本帶來了困難。

命名實體識別NER任務

在MSRA-NER和People’s Daily兩個數據集上對命名實體識別任務進行評測,結果如下表所示。e922c94e-cf96-11ec-bce3-dac502259ad0.png

PERT模型相比于其他模型均取得最優的效果,表明預訓練中的亂序文在序列標記任務中的良好能力。

對比機器閱讀理解、文本分類和命名實體識別三個任務,可以發現,PERT模型在MRC和NER任務上表現較好,但在TC任務上表現不佳,這意味著TC任務對詞語順序更加敏感,由于TC任務的輸入文本相對較短,有些詞語順序的改變會給輸入文本帶來完全的意義變化。然而,MRC任務的輸入文本通常很長,幾個單詞的排列可能不會改變整個文章的敘述流程;并且對于NER任務,由于命名實體在整個輸入文本中只占很小的比例,因此詞語順序改變可能不會影響NER進程。

語法檢查任務

在Wikipedia、Formal Doc、Customs和Legal 4個數據集上對文本分類任務進行評測語法檢查任務進行評測,結果如下表所示。e938f854-cf96-11ec-bce3-dac502259ad0.png

PERT模型相比于其他模型均取得最優的效果,這是由于下游任務與預訓練任務非常相似導致的。

預訓練的訓練步數對PERT模型的影響

不同的下游任務的最佳效果可能出現在不同的預訓練步驟上,如下圖所示。e98c68c2-cf96-11ec-bce3-dac502259ad0.png

我們發現對于MRC和NER任務,隨著預訓練步數的增加,下游任務也會隨之提高。然而,對于TC任務,不同數據的指標在不同的步數上取得最優。如果考慮到特定任務的效果,有必要在早期訓練中保存部分模型。

不同的打亂粒度對PERT模型的影響

不同粒度間的打亂,可以使使輸入文本更具可讀性。通過在不同粒度內亂序輸入文本來比較性能,如下表所示。e9a25be6-cf96-11ec-bce3-dac502259ad0.png

我們發現,在各種打亂粒度中,無限制亂序的PERT模型在所有任務中都取得了最優的效果;而選擇最小粒度(詞語之間)的模型,效果最差。可能原因是,雖然使用更小的粒度的亂序可以使輸入文本更具可讀性,但是對預訓練任務的挑戰性較小,使模型不能學習到更好地語義信息。

不同預測空間對PERT模型的影響

將PERT模型使用詞表空間作為預測目標是否有效?如下表所示。

e9b7dda4-cf96-11ec-bce3-dac502259ad0.png

實驗結果表明,PERT模型不需要在詞表空間中進行預測,其表現明顯差于在輸入序列上的預測;并且將兩者結合的效果也不盡如人意。

預測部分序列和預測全部序列對PERT模型的影響

ELECTRA模型的實驗發現預測完全序列的效果比部分序列的更好,因此ELECTRA模型采用RTD任務對判別器采用完全序列預測。但通過本論文實驗發現,預測完全序列在PERT模型中并沒有產生更好的效果。表明在預訓練任務中使用預測全部序列并不總是有效的,需要根據所設計的預訓練任務進行調整。e9db0a7c-cf96-11ec-bce3-dac502259ad0.png

總結

PERT模型的預訓練思路還是挺有意思的,并在MRC、NER和WOR任務上均取得了不錯的效果。并且由于結構與BERT模型一致,因此在下游任務使用時,僅修改預訓練模型加載路徑就實現了模型替換,也比較方便。當打比賽或者做業務時候,可以不妨試一試,說不定有奇效。(ps:我在我們自己的MRC數據集上做過實驗,效果不錯呦!!)


審核編輯 :李倩



聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 語言模型
    +關注

    關注

    0

    文章

    561

    瀏覽量

    10710
  • 自然語言處理

    關注

    1

    文章

    628

    瀏覽量

    14058

原文標題:PERT:一種基于亂序語言模型的預訓練模型

文章出處:【微信號:zenRRan,微信公眾號:深度學習自然語言處理】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦
    熱點推薦

    用PaddleNLP為GPT-2模型制作FineWeb二進制訓練數據集

    作者:算力魔方創始人/英特爾創新大使劉力 《用PaddleNLP在4060單卡上實踐大模型訓練技術》發布后收到讀者熱烈反響,很多讀者要求進步講解更多的技術細節。本文主要針對大
    的頭像 發表于 03-21 18:24 ?1362次閱讀
    用PaddleNLP為GPT-2<b class='flag-5'>模型</b>制作FineWeb二進制<b class='flag-5'>預</b><b class='flag-5'>訓練</b>數據集

    小白學大模型訓練語言模型的深度指南

    在當今人工智能飛速發展的時代,大型語言模型(LLMs)正以其強大的語言理解和生成能力,改變著我們的生活和工作方式。在最近的項研究中,科學家們為了深入了解如何高效地
    的頭像 發表于 03-03 11:51 ?657次閱讀
    小白學大<b class='flag-5'>模型</b>:<b class='flag-5'>訓練</b>大<b class='flag-5'>語言</b><b class='flag-5'>模型</b>的深度指南

    用PaddleNLP在4060單卡上實踐大模型訓練技術

    作者:算力魔方創始人/英特爾創新大使劉力 之前我們分享了《從零開始訓練個大語言模型需要投資多少錢》,其中高昂的
    的頭像 發表于 02-19 16:10 ?906次閱讀
    用PaddleNLP在4060單卡上實踐大<b class='flag-5'>模型</b><b class='flag-5'>預</b><b class='flag-5'>訓練</b>技術

    騰訊公布大語言模型訓練新專利

    近日,騰訊科技(深圳)有限公司公布了項名為“大語言模型訓練方法、裝置、計算機設備及存儲介質”的新專利。該專利的公布,標志著騰訊在大語言
    的頭像 發表于 02-10 09:37 ?370次閱讀

    【「基于大模型的RAG應用開發與優化」閱讀體驗】+大模型微調技術解讀

    ,減少了計算成本。LoRA(Low-Rank Adaptation):一種基于低秩分解的微調方法,通過分解模型參數矩陣為低秩矩陣來減少參數更新的數量,提高訓練效率。PET(Prompt-based
    發表于 01-14 16:51

    KerasHub統、全面的訓練模型

    深度學習領域正在迅速發展,在處理各種類型的任務中,訓練模型變得越來越重要。Keras 以其用戶友好型 API 和對易用性的重視而聞名,始終處于這動向的前沿。Keras 擁有專用的內
    的頭像 發表于 12-20 10:32 ?468次閱讀

    語言模型開發框架是什么

    語言模型開發框架是指用于訓練、推理和部署大型語言模型的軟件工具和庫。下面,AI部落小編為您介紹大語言
    的頭像 發表于 12-06 10:28 ?494次閱讀

    什么是大模型、大模型是怎么訓練出來的及大模型作用

    ,基礎模型。 ? 大模型個簡稱,完整的叫法,應該是“人工智能訓練模型”。
    的頭像 發表于 11-25 09:29 ?1.3w次閱讀
    什么是大<b class='flag-5'>模型</b>、大<b class='flag-5'>模型</b>是怎么<b class='flag-5'>訓練</b>出來的及大<b class='flag-5'>模型</b>作用

    從零開始訓練個大語言模型需要投資多少錢?

    ,前言 ? 在AI領域,訓練個大型語言模型(LLM)是個耗時且復雜的過程。幾乎每個做大型
    的頭像 發表于 11-08 14:15 ?731次閱讀
    從零開始<b class='flag-5'>訓練</b><b class='flag-5'>一</b>個大<b class='flag-5'>語言</b><b class='flag-5'>模型</b>需要投資多少錢?

    【《大語言模型應用指南》閱讀體驗】+ 基礎知識學習

    的表達方式和生成能力。通過預測文本中缺失的部分或下個詞,模型逐漸掌握語言的規律和特征。 常用的模型結構 Transformer架構:大語言
    發表于 08-02 11:03

    語言模型訓練

    能力,逐漸成為NLP領域的研究熱點。大語言模型訓練是這技術發展的關鍵步驟,它通過在海量無標簽數據上進行
    的頭像 發表于 07-11 10:11 ?924次閱讀

    llm模型訓練般用什么系統

    LLM(Large Language Model,大型語言模型)是近年來在自然語言處理領域取得顯著成果的一種深度學習模型。它通常需要大量的計
    的頭像 發表于 07-09 10:02 ?771次閱讀

    llm模型有哪些格式

    Representations from Transformers):BERT是一種雙向訓練模型,通過大量文本數據進行
    的頭像 發表于 07-09 09:59 ?1330次閱讀

    llm模型和chatGPT的區別

    基于Transformer架構的訓練語言模型,它可以生成連貫、自然的文本。ChatGPT使用GPT模型作為基礎,通過微調和
    的頭像 發表于 07-09 09:55 ?1919次閱讀

    訓練模型的基本原理和應用

    訓練模型(Pre-trained Model)是深度學習和機器學習領域中的個重要概念,尤其是在自然語言處理(NLP)和計算機視覺(CV)
    的頭像 發表于 07-03 18:20 ?4253次閱讀
    主站蜘蛛池模板: 天天摸天天做天天爽天天弄 | 免费观看做网站爱 | 精品久久久久久中文字幕欧美 | 好大好硬好爽免费视频 | 欧美在线视频二区 | www在线视频观看 | 日韩福利一区 | 国产高清视频免费最新在线 | 亚洲欧美视频在线播放 | 不卡午夜| 色尼玛亚洲综合 | 3344在线观看永久免费 | 亚洲综合狠狠 | 欧美一区二区三区男人的天堂 | www四虎在线高清 | 六月婷婷啪啪 | 亚洲精品精品一区 | 黄色网 在线播放 | 在线成人亚洲 | 欧美一区二区三区免费高 | 欧美在线视频免费播放 | 濑亚美莉iptd619在线观看 | 免费在线观看理论片 | 色噜噜噜噜噜 | 亚洲综合天堂网 | 九色视频在线看 | 91大神在线精品网址 | 夜夜爽天天狠狠九月婷婷 | 蝌蚪自拍网二区 | 欧美成人亚洲 | 天堂8在线天堂资源在线 | www.夜色| 男人午夜免费视频 | 亚洲欧美在线观看 | 天天看黄色 | 欧美美女福利视频 | 久久国模 | 国产成人精品三级 | 亚洲影视网 | 91大神在线观看精品一区 | 欧美影院 |