在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

線性狀態下的SiC MOSFET

張波 ? 來源:青上也 ? 作者:青上也 ? 2022-07-25 08:05 ? 次閱讀

SiC MOSFET在開/關切換模式下運行。然而,了解其在線性狀態下的行為是有用的,當驅動程序發生故障或設計人員為特定目的對其進行編程時,可能會發生這種情況。

電子元件的線性區(或有源區)是所有可用電流都無法流通的區域,它充當電流調節器。

不言而喻,功耗極高,而效率卻極低。

但是,在某些情況下,電子元件在線性區域中運行,導致以下結果:

柵極電壓V g不在廠家設定的正負極限,而是位于中心區域附近;

漏源電壓V ds不接近于零,而是處于高得多的電壓;

漏極電流 I d由重要值表征;

組件耗散的功率非常高;

元件溫度也很高;

電路效率低。

線性區可用于為采用 SiC MOSFET 的無線電發射器創建 A 類模擬音頻放大器,但也可能在組件驅動器發生故障時發生。因此,設計人員應控制 MOSFET 之前的電路。

MOSFET的電氣圖和線性操作

在我們的示例中使用了具有下列屬性的 SiC MOSFET 型號 C3M0160120D。圖 1描述了接線圖。

V ds : 1,200 V

I d : 17 A, 25 ?C

RDS (開):160 m Ω

靜態狀態下的柵極電壓:-4 V 至 15 V

最大功耗:97 W

在以下直流模擬中,柵極上的電壓跨越制造商指定的整個范圍(從 -4 V 到 15 V),當然不會超出這些限制。

該電路使用低電流為負載供電,不會對半導體施加任何壓力。

測試的目的是查看組件的各種參數,尤其是當它們在關閉或開啟區域中不起作用時。

仿真還跟蹤結點和散熱器溫度。

圖 1:SiC MOSFET 線性區操作的接線圖。

接線圖包括一個 200-V (V1) 電源、一個非常堅固的 100- Ω 電阻負載 (R1)、 C3M0160120D SiC MOSFET (U1) 和一個可變電壓發生器(從 -4 V 到 15 V),用于用驅動功能 (V2) 驅動 MOSFET 柵極。圖中還包括一個散熱器。

直流掃描的模擬

該系統的電氣仿真不包括瞬態模式,而是直流掃描模式,其中所有柵極的電源電壓都將在 -4 V 至 15 V 的范圍內以 10 mV 的步長進行檢查。

您可以通過這種方式看到 MOSFET 如何對不同的柵極電壓做出反應。以下是用于運行此類仿真的 SPICE 指令:

.dc v2 -4 15 0.01

該系統的電氣仿真沒有瞬態模式,而是直流掃描模式,其中將在 -4 V 至 15 V 的范圍內以 10 mV 的步長研究所有柵極的電源電壓。

加載電流圖

我們要查看的第一張圖是圖 2 中的圖,它顯示了流經負載的電流作為柵極電壓的函數。柵極上的電壓由 X 軸表示,而負載上的電流由 Y 軸表示。

如您所見,該圖可以分為三個不同的區域:

該組件位于左側的遮斷區域(藍色),因為柵極電壓(從 -4 V 到 3 V)不足以導通器件。在這種情況下,MOSFET 不傳導電流,DS 結實際上是開路(約 400 M Ω)。

因為柵極電壓(從 7 V 到 15 V)足以使器件在決定時導通,所以器件位于右側區域(綠色),其中組件處于飽和區。在這種情況下,MOSFET 傳導最大電流,DS 結實際上是一個閉合電路(約 160 m Ω)。

元件位于線性區域的中心區域(紅色)是柵極電壓(從 3 V 到 7 V)允許器件傳導部分電流的位置。在這種情況下,MOSFET 會發熱很多,并用作低效率電流調節器。DS 結的歐姆電阻在 6 k Ω和 2 Ω 之間。

圖 2:負載電流與柵極電壓的關系圖

設備消耗的功率

在前面的示例中,流經器件的電流代表典型操作,因為 DS 通道的歐姆電阻會隨著柵極電壓的升高而降低。柵極上的電壓表示在 X 軸上,MOSFET 消耗的功率表示在 Y 軸上。

另一方面, 如圖 3 中的圖表所示,耗散功率的軌跡非常引人注目。在這種情況下,還可以看到三個單獨的部分:

左側區域的柵極電壓在 -4 V 和 2 V 之間。在這種情況下,MOSFET 處于禁用狀態,沒有電流從負載流出,耗散功率幾乎為零。

右側區域的柵極電壓在 6 V 和 15 V 之間。在這種情況下,MOSFET 處于完全飽和狀態,最大電流通過負載,平均耗散功率為 1.5 W。這種耗散是由于 R DS(on)的值,盡管它非常低,但在現代技術狀態下還不等于零。

由于柵極電壓在 2 V 和 6 V 之間,MOSFET 位于中心區域的線性區域。在這種情況下,MOSFET 處于有源區,并且耗散功率非常高,在 100 W 左右達到峰值,并導致大量熱量積聚。雖然理論上避免將半導體的工作區域置于此范圍內是至關重要的,但在某些情況下,設計人員會故意選擇這樣做。

圖 3:MOSFET 功耗與柵極電壓的關系圖

效率

系統的效率也與 MOSFET 消耗的功率成反比。請記住,計算通用電路效率的公式如下。

圖 4 中的圖表 顯示了與柵極電壓相關的電路效率趨勢。當后者大約在 2 V 和 5.5 V 之間時,MOSFET 工作在線性區域,因此系統的效率不是最佳的。

當設備處于飽和區時,該值幾乎達到 100%。X 軸代表柵極上的電壓,Y 軸代表電路的效率,以百分比表示。

圖 4:系統效率與柵極電壓的關系圖

MOSFET的工作溫度

器件和散熱器之間的結溫控制也是一個非常重要的特權,它允許設計人員正確確定所涉及的電流和冷卻系統的尺寸。由于采用了 LTspice 庫中提供的 SOAtherm-HeatSink 模型,只要 SPICE半導體組件配備“T c ”和“T j ”端子,就可以監控兩個溫度。在這個例子中,散熱器的材料是鋁。其熱阻 (Rθ) 等于 0.2°C/W。模擬的環境溫度為 25°C。最后,電子元件與散熱器的接觸面積為300 mm 2,而后者的體積為5,000 mm3 。

最后,在 圖 5的圖表中,可以觀察到與結和散熱器相關的溫度趨勢。盡管圖表將它們報告為以伏特表示的電壓,但它們是以攝氏度表示的成熟溫度。請記住,域是柵極電壓的域,而不是時間的域。

該圖顯示了兩種不同的情況:

在 MOSFET 的阻斷和飽和區,結溫和散熱器溫度實際上等于環境溫度,相當于 25°C,而柵極電壓介于 -4 V 和 2 V 之間,然后介于 9 V 和 15 V 之間。

在線性區,溫度很關鍵,在最高峰時,結達到 230°C,散熱器達到 103°C。在這些條件下,顯然 MOSFET 被破壞了。

圖 5:結和散熱器溫度與柵極電壓的關系圖

音頻放大器

在線性狀態下使用 SiC MOSFET 制作 A 類音頻放大器是一個有趣的實驗(參見 圖 6中的原理圖)。今天,使用 A 類放大器極為罕見。但是,當您需要以非常小的失真放大信號時,A 類放大器非常有用。從音頻的角度來看,在這種情況下,設備在其完整的線性區域內工作,確保了高效的性能。主要缺點是 A 類放大器會產生大量熱量以消散,因為即使沒有音頻信號,MOSFET 和負載電阻也必須消耗大量電流。因此,系統始終以最大可用功率工作。

圖 6:A 類放大器不會使音頻信號失真,但會產生大量熱量。

在接線圖中,負載電阻R1至少應該能夠承受130W,而MOSFET的功耗為60W。顯然,提供的聲音功率要低得多,效率也很低。

在 圖 7中,可以觀察到輸入和輸出信號(后者與第一個信號反相,頻率為 300 Hz),最重要的是,諧波失真小于 6%。

圖 7:A 類放大信號和相關的 FFT 處理

結論

在當今的高效研究方法下,在線性狀態下使用半導體不再有意義,而依靠 PWM 和開關解決方案要好得多,這無疑提供了更高的性能保證。

審核編輯:郭婷

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • MOSFET
    +關注

    關注

    148

    文章

    7864

    瀏覽量

    217593
  • 無線電
    +關注

    關注

    60

    文章

    2161

    瀏覽量

    117492
  • SiC
    SiC
    +關注

    關注

    31

    文章

    3110

    瀏覽量

    64176
收藏 人收藏

    評論

    相關推薦
    熱點推薦

    SiC MOSFET 開關模塊RC緩沖吸收電路的參數優化設計

    0? 引言SiC-MOSFET 開關模塊(簡稱“SiC 模塊”)由于其高開關速度、高耐壓、低損耗的特點特別適合于高頻、大功率的應用場合。相比 Si-IGBT, SiC-MOSFET 開關速度更快
    發表于 04-23 11:25

    麥科信光隔離探頭在碳化硅(SiCMOSFET動態測試中的應用

    碳化硅(SiCMOSFET 是基于寬禁帶半導體材料碳化硅(SiC)制造的金屬氧化物半導體場效應晶體管,相較于傳統硅(Si)MOSFET,具有更高的擊穿電壓、更低的導通電阻、更快的開關
    發表于 04-08 16:00

    溝槽型SiC MOSFET的結構和應用

    MOSFET(U-MOSFET)作為新一代功率器件,近年來備受關注。本文將詳細解析溝槽型SiC MOSFET的結構、特性、制造工藝、應用及其技術挑戰。
    的頭像 發表于 02-02 13:49 ?618次閱讀

    SiC MOSFET的參數特性

    碳化硅(SiCMOSFET作為寬禁帶半導體材料(WBG)的一種,具有許多優異的參數特性,這些特性使其在高壓、高速、高溫等應用中表現出色。本文將詳細探討SiC MOSFET的主要參數特
    的頭像 發表于 02-02 13:48 ?780次閱讀

    驅動Microchip SiC MOSFET

    電子發燒友網站提供《驅動Microchip SiC MOSFET.pdf》資料免費下載
    發表于 01-21 13:59 ?0次下載
    驅動Microchip <b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>

    Si IGBT和SiC MOSFET混合器件特性解析

    大電流 Si IGBT 和小電流 SiC MOSFET 兩者并聯形成的混合器件實現了功率器件性能和成本的折衷。 但是SIC MOS和Si IGBT的器件特性很大不同。為了盡可能在不同工況
    的頭像 發表于 01-21 11:03 ?1364次閱讀
    Si IGBT和<b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>混合器件特性解析

    SiC MOSFET分立器件及工業模塊介紹

    BASiC國產SiC碳化硅MOSFET分立器件及碳化硅功率SiC模塊介紹
    發表于 01-16 14:32 ?1次下載

    國產SiC MOSFET,正在崛起

    來源:電子工程世界 SiC(碳化硅),已經成為車企的一大賣點。而在此前,有車企因是否全域采用SiC MOSFET,發生激烈輿論戰。可見,SiC這一市場在汽車領域頗有潛力。 不過,近幾年
    的頭像 發表于 01-09 09:14 ?351次閱讀
    國產<b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>,正在崛起

    DAC7811在哪種錯誤狀態下,或者錯誤的控制會輸出正壓嗎?

    錯誤狀態下,輸出如下: 通道3(藍色),為DAC輸出經運放轉變后的電壓,可看出為+1.5V,通道1通道2(黃色、綠色)為后級差分運放輸出; DAC7811在哪種錯誤狀態下,或者錯誤的控制會輸出正壓嗎?
    發表于 12-24 08:15

    在飽和狀態下運行UCC2888x離線降壓以降低成本

    電子發燒友網站提供《在飽和狀態下運行UCC2888x離線降壓以降低成本.pdf》資料免費下載
    發表于 10-14 09:47 ?0次下載
    在飽和<b class='flag-5'>狀態下</b>運行UCC2888x離線降壓以降低成本

    mosfet的三種工作狀態及工作條件是什么

    )的不同,可以工作在三種主要狀態:截止狀態、線性區和飽和區。 1. 截止狀態 工作狀態描述 : 當VGS小于
    的頭像 發表于 10-06 16:51 ?4779次閱讀

    ON狀態下高壓側開關開路負載檢測應用說明

    電子發燒友網站提供《ON狀態下高壓側開關開路負載檢測應用說明.pdf》資料免費下載
    發表于 09-13 10:19 ?0次下載
    ON<b class='flag-5'>狀態下</b>高壓側開關開路負載檢測應用說明

    SiC MOSFETSiC SBD的區別

    SiC MOSFET(碳化硅金屬氧化物半導體場效應晶體管)和SiC SBD(碳化硅肖特基勢壘二極管)是兩種基于碳化硅(SiC)材料的功率半導體器件,它們在電力電子領域具有廣泛的應用。盡
    的頭像 發表于 09-10 15:19 ?2903次閱讀

    在關斷狀態下CYT2B93的引腳狀態是什么?

    我使用的是 CYT2B93,我對關斷狀態下的引腳狀態很好奇。 (關閉電源) 我將 CYT2B93 GPIO 引腳連接到外部上拉(5V)。 當 MCU 處于開機狀態時,GPIO PIN 的電壓水平
    發表于 05-20 06:37

    如何更好地驅動SiC MOSFET器件?

    IGBT的驅動電壓一般都是15V,而SiC MOSFET的推薦驅動電壓各品牌并不一致,15V、18V、20V都有廠家在用。更高的門極驅動電壓有助于降低器件導通損耗,SiC MOSFET
    的頭像 發表于 05-13 16:10 ?891次閱讀
    主站蜘蛛池模板: 亚州1区2区3区4区产品乱码2021 | 欧美大尺度aaa级毛片 | 性 色 黄 一级 | 色视频色露露永久免费观看 | 波多野结衣久久精品 | 永久免费看www色视频 | 五月天丁香婷婷网 | 久久99爱爱 | 国产黄色网 | 四虎现在的网址入口 | 黄色大秀视频 | 四虎永久免费最新在线 | www.毛片网站 | 欧美色香蕉| 欧美在线1 | 极品色天使在线婷婷天堂亚洲 | 婷婷久久综合九色综合九七 | 久久精品视频99精品视频150 | 黄色片xxx | 天堂最新版免费观看 | 五月婷婷丁香综合网 | 亚洲影院手机版777点击进入影院 | 夜夜操夜夜 | 麒麟色欧美影院在线播放 | 2019天天干夜夜操 | 狠狠狠色丁香婷婷综合久久五月 | 亚洲日韩色综合视频 | 视频在线观看一区 | 国产精品热久久毛片 | 色噜噜噜| 七月丁香八月婷婷综合激情 | 毛片2016免费视频 | 色吧五月天| 豆国产97在线 | 欧洲 | 免费一级毛片在级播放 | 色五月激情五月 | 天天摸天天做天天爽天天弄 | 美女张开大腿让男人捅 | 一级做a爱过程免费视 | 青草久草视频 | 日本不卡一区在线 |