人工智能尤其是深度學習技術的最新進展,加速了不同應用領域的創(chuàng)新與發(fā)展。深度學習技術的發(fā)展深刻影響了軍事發(fā)展趨勢,導致戰(zhàn)爭形式和模式發(fā)生重大變化。本文將概述
發(fā)表于 02-14 11:15
?467次閱讀
隨著人工智能技術的飛速發(fā)展,深度學習作為其核心驅動力之一,已經(jīng)在眾多領域展現(xiàn)出了巨大的潛力和價值。NPU(Neural Processing Unit,神經(jīng)網(wǎng)絡處理單元)是專門為深度學習
發(fā)表于 11-14 15:17
?1752次閱讀
掌握這 17 種方法,用最省力的方式,加速你的 Pytorch 深度學習訓練。
發(fā)表于 10-28 14:05
?574次閱讀
GPU在深度學習中的應用廣泛且重要,以下是一些GPU深度學習應用案例: 一、圖像識別 圖像識別是深度學習
發(fā)表于 10-27 11:13
?1140次閱讀
FPGA(現(xiàn)場可編程門陣列)加速深度學習模型是當前硬件加速領域的一個熱門研究方向。以下是一些FPGA加速深度學習模型的案例: 一、基于FPGA的AlexNet卷積運算加速 項目名稱
發(fā)表于 10-25 09:22
?1095次閱讀
AI大模型與深度學習之間存在著密不可分的關系,它們互為促進,相輔相成。以下是對兩者關系的介紹: 一、深度學習是AI大模型的基礎 技術支撐 :深度
發(fā)表于 10-23 15:25
?2725次閱讀
,共同進步。
歡迎加入FPGA技術微信交流群14群!
交流問題(一)
Q:FPGA做深度學習能走多遠?現(xiàn)在用FPGA做深度學習加速成為一個熱門,深鑒科技,商湯,曠視科技等都有基于FPG
發(fā)表于 09-27 20:53
時間序列分類(Time Series Classification, TSC)是機器學習和深度學習領域的重要任務之一,廣泛應用于人體活動識別、系統(tǒng)監(jiān)測、金融預測、醫(yī)療診斷等多個領域。隨著深度
發(fā)表于 07-09 15:54
?1972次閱讀
深度學習作為機器學習領域的一個重要分支,近年來在多個領域取得了顯著的成果,特別是在圖像識別、語音識別、自然語言處理等領域。然而,深度學習模型
發(fā)表于 07-09 10:50
?1585次閱讀
深度學習和自然語言處理(NLP)是計算機科學領域中兩個非常重要的研究方向。它們之間既有聯(lián)系,也有區(qū)別。本文將介紹深度學習與NLP的區(qū)別。 深度
發(fā)表于 07-05 09:47
?1545次閱讀
在計算機視覺領域,目標檢測一直是研究的熱點和難點之一。特別是在小目標檢測方面,由于小目標在圖像中所占比例小、特征不明顯,使得檢測難度顯著增加。隨著深度學習技術的快速發(fā)展,尤其是卷積神經(jīng)網(wǎng)絡(CNN
發(fā)表于 07-04 17:25
?1922次閱讀
在深度學習這一充滿無限可能性的領域中,模型權重(Weights)作為其核心組成部分,扮演著至關重要的角色。它們不僅是模型學習的基石,更是模型智能的源泉。本文將從模型權重的定義、作用、優(yōu)化、管理以及應用等多個方面,深入探討
發(fā)表于 07-04 11:49
?3862次閱讀
深度學習作為人工智能的一個重要分支,通過模擬人類大腦中的神經(jīng)網(wǎng)絡來解決復雜問題。Python作為一種流行的編程語言,憑借其簡潔的語法和豐富的庫支持,成為了深度學習研究和應用的首選工具。
發(fā)表于 07-03 16:04
?1084次閱讀
深度學習作為人工智能領域的一個重要分支,在過去十年中取得了顯著的進展。在構建和訓練深度學習模型的過程中,深度
發(fā)表于 07-02 14:04
?1548次閱讀
在人工智能的浪潮中,機器學習和深度學習無疑是兩大核心驅動力。它們各自以其獨特的方式推動著技術的進步,為眾多領域帶來了革命性的變化。然而,盡管它們都屬于機器學習的范疇,但
發(fā)表于 07-01 11:40
?2275次閱讀
評論